期刊文献+

P-laplacian算子型奇异边值条件的上下解方法

An Upper and Lower Solution Approach to P-laplacian with Singular Boundary Conditions
下载PDF
导出
摘要 本文利用上下解方法,讨论一类具p-laplacian算子型奇异边值问题解的存在性. Using an upper and lower approach,this paper discussed the existence of positive solutions for singular boundary value problems of form(Ф——p( u')) ' + q( t) f( t,u) = 0,0 t〈 1
作者 李洪梅 李静
出处 《泰山学院学报》 2016年第6期42-46,共5页 Journal of Taishan University
基金 泰山学院引进人才科技计划项目(Y-01-2013014)
关键词 奇异边值问题 正解 上下解方法 singular boundary value problem positive solutions upper and lower solution approach
  • 相关文献

参考文献2

二级参考文献10

  • 1O'Regan D, Some existence principles and some general results for singular nonlinear two point boundary value problems, J Math. Anal. Appl., 1992. 166:24-40.
  • 2O'Regan D, Agarwal R P, Singular problems: an upper and lower solution approach, J Math. Anal. Appl.,2000, 251: 230-250.
  • 3Agaxwal R P, O'Regan D, Nonlinear superlinear singular and nonsingular second order boundary value problems, J Diff. Eqns., 1998, 143: 60-95.
  • 4Agarwal R P, O'Regan D, Some new results for singular problems with sign charting nonliearities, J Comput. Appl. Math.. 2000. 113: 1-15.
  • 5Jiang D Q, Upper and lower solutions for a superlinear singular Boundary value problems, Urnputers Math.Applic., 2001, 41(5/6): 563-569.
  • 6O'Regan D, Theory of singular boundary value problems, Singapore: World Scientific Publishing Co. Pte.Ltd., 1994.
  • 7Gatica J A, Oliker V, Waltman P. Singuler Nonlinear Boundray Value Problems for Second Order Differential Equations. J D E , 1989, 79:62-78.
  • 8O'Regan Donal. Existence Theory for Nonlinear Ordinary Differential Equations. Dordrecht: Kluwer Acad. Publ., 1997.
  • 9O'Regan D. Theory of Singular Boundary Value Problems. Singapore: World Scientific Press, 1994.
  • 10Agarwal Ravi P, O'Regan D. A Note on Existence of Nonnegative Solutions to Singular Semi-positone Problems. Nonlinear Analysis, 1999, 36:615-622.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部