期刊文献+

几类分形曲面的构造及其性质 被引量:1

Constructions and Properties of Several Kinds of Fractal Surfaces
下载PDF
导出
摘要 分形曲面是R^3中的一个分形集.通常,它的构造与分形函数密切相关.本文主要研究几类分形曲面的构造方法及其性质,并给出一些数值例子,说明分形曲面与原始曲面间的关系. A fractal surface is a fractal set in R^3. Generally,the constructions of fractal surfaces are closely related to the fractal functions. The methods of constructions and properties of several kinds of fractal surfaces are investigated in the present paper. Furthermore,several numerical examples are given,which illustrate the relationships between the fractal surfaces and their original functions.
作者 栗兴琴
出处 《泰山学院学报》 2016年第6期52-57,共6页 Journal of Taishan University
关键词 迭代函数系 分形插值函数 分形曲面 性质 iterated function system fractal interpolation function fractal surfaces properties
  • 相关文献

参考文献1

二级参考文献25

  • 1Barnsley M. F., Fractal functions and interpolation, Constr. Approx., 1986, 2: 303-329.
  • 2Bouboulis P., Dalla L., A general construction of fractal interpolation functions on grids of :n, Euro. J. Appl. Math., 2007, 18: 449-476.
  • 3Bouboulis P., Dalla L., Fractal interpolation surfaces derived from fractal interpolation functions, J. Math. Anal. Appl., 2007, 336: 919-936.
  • 4Bouboulis P., Dalla L., Drakopoulos V., Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension, J. Approx. Theory, 2006, 141(2): 99-117.
  • 5Chand A. K. B., Natural cubic spline coalescence hidden variable fractal interpolation surfaces, Fractals, 2012, 20(2): 117-131.
  • 6Chand A. K. B., Kapoor G. P., Hidden variable bivariate fractal interpolation surfaces, Fractals, 2003, 11(3): 277-288.
  • 7Dalla L., Bivariate fractal interpolation functions on grids, Fractals, 2002, 10(1): 53-58.
  • 8Falconer K., Practal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
  • 9Feng Z., Variation and Minkowski dimension of fractal interpolation surfaces, J. Math. Anal. Appl., 2008, 345: 322-334.
  • 10Feng Z., Feng Y., Yuan Z., Fractal interpolation surfaces with function vertical scaling factors, Appl. Math. Lett., 2012, 25: 1896-1900.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部