期刊文献+

GNSS辅助捷联惯导行进间对准自适应滤波方法 被引量:4

In-motion alignment adaptive filter method for GNSS-aided strap-down inertial navigation system
下载PDF
导出
摘要 针对车载武器系统快速发射需求,提出一种基于GNSS辅助的捷联惯导行进间对准自适应滤波方法。该方法把行进间传递对准分为粗对准与精对准两个阶段。粗对准阶段以GNSS为观测基准完成对捷联惯导姿态的粗捕获,降低初始偏差不确定性对于精对准阶段的影响。在精对准阶段,考虑到车载系统的运动特性,提出一种"水平+方位"行进间对准双滤波器并行的设计思路,利用车载系统在不同时间段的动力学特性,对三轴姿态估计进行分时解耦,实现初始姿态的高精度估计;与此同时,引入协方差成形自适应调节过程,以最小化Frobenius范数为优化指标,实现对行进间对准卡尔曼滤波器的自适应调节,增强系统鲁棒性。数值仿真表明,协方差成形自适应卡尔曼滤波方法能够有效保证系统在全运动剖面内的稳定,结合双滤波器并行方案能够有效解决行进间对准精度不高与稳定性欠佳等问题,水平对准精度优于1.5′(1σ),方位对准精度优于6′(1σ)。 In view of the rapid-launch requirement for vehicle weapon system, an in-motion alignment adaptive filtering method for GNSS-aided strap-down inertial navigation system(SINS) is proposed. The in-motion transfer alignment is composed of two stage, i.e. coarse alignment and precise alignment. In the coarse alignment stage, the coarse acquisition of the SINS's attitude is accomplished by taking GNSS as the observation datum, which can reduce the effect of initial deviation uncertainty on the precise alignment stage. In the precise alignment stage, the horizontal and azimuth filters work in parallel to improve the attitude estimation accuracy using three-axis attitude decoupling in the process of vehicle system movement. Meanwhile, the covariance shaping process is introduced by taking the minimum Frobenius norm as the optimization index to realize the self-adaptive in-motion alignment Kalman filter and improve the robustness of the system. Numerical simulation shows that the double-filter parallel scheme with covariance shaping adaptive Kalman filtering can effectively solve such problems as poor stability and low alignment accuracy, and the alignment accuracies are increased to 1.5′(1σ, horizontal) and 6′(1σ, azimuth).
出处 《中国惯性技术学报》 EI CSCD 北大核心 2016年第5期577-582,共6页 Journal of Chinese Inertial Technology
基金 国家高技术研究发展计划(863计划)(2015AA7026083)
关键词 行进间对准 协方差成形 自适应滤波 FROBENIUS范数 分时解耦 in-motion alignment covariance shaping adaptive filtering Frobenius norm time division decoupling
  • 相关文献

参考文献3

二级参考文献17

  • 1缪玲娟,沈军,刘伟,杨勇.Initial Alignment Technique for SINS of Vehicles in the Moving State[J].Journal of Beijing Institute of Technology,2002,11(3):234-239. 被引量:17
  • 2郭振西,缪玲娟,沈军.里程计组合的捷联惯导系统运动基座对准研究[J].北京理工大学学报,2005,25(1):67-70. 被引量:16
  • 3时伟,薛祖瑞,吴美平.基于小波检测的捷联惯导系统初始对准抗干扰新方法[J].中国惯性技术学报,2005,13(3):14-16. 被引量:7
  • 4秦永元,严恭敏,顾冬晴,郑吉兵.摇摆基座上基于信息的捷联惯导粗对准研究[J].西北工业大学学报,2005,23(5):681-684. 被引量:131
  • 5张红良,吴文启,胡小平.一种新的里程计刻度因子在线辨识算法[C]∥Proceedings of the26th Chinese Control Confer-ence.Kunming:CCC,2007:115-117.
  • 6Wu Yuanxin,Wu Meiping,Hu Xiaoping,Hu Dewen.Self-calibration for land navigation using inertial sensors and odometer:Observability analysis[C] //AIAA Conference of Guidance,Navigation and Control.2009:1-10.
  • 7Wu Yuanxin,Goodall C,EI-Sheimy N.Self-calibration for IMU/Odometer land navigation:simulation and test results[C] //Proceedings of ION/ITM.2010:839-849.
  • 8Ali J,Ushaq M.A consistent and robust Kalman filter design for in-motion alignment of inertial navigation system[J].Measurement,2009,42(4):577-582.
  • 9Syed Z F,Aggarwal P,Niu X J,EI-Sheimy N.Civilian vehicle navigation:required alignment of the inertial sensors for accepted navigation accuracies[J].IEEE Transactions on Vehicular Technology,2008,57(6):3402-3412.
  • 10Georgy J,Noureldin A,Korenberg M,Bayoumi M.Low-cost three-dimensional navigation solution for RISS/GPS integration using mixture particle filter[J].IEEE Transactions on Vehicular Technology,2010,59(2):599-615.

共引文献45

同被引文献20

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部