期刊文献+

基于离散粒子群算法的粗糙集属性约简 被引量:2

A DPSO Based Attribute Reduction Algorithm for Rough Set
下载PDF
导出
摘要 提出了一种改进的属性约简启发式算法,首先介绍了离散粒子群算法的基本原理,构造出适应值函数,利用粒子群算法对信息系统进行属性约简,并通过实例验证该方法的有效性。 A kind of improved attribute reduction algorithm is proposed.Firstly,this paper introduces the basic principle of discrete particle swarm optimization algorithm,construct the fitness function,the use of particle swarm algorithm of information system for attribute reduction,and effectiveness of the method is verified by an example.
作者 李志豪
机构地区 上海海事大学
出处 《工业控制计算机》 2016年第11期102-103,106,共3页 Industrial Control Computer
关键词 粗糙集 离散粒子群算法 属性约简 适应值函数 rough set DPSO attribute reduction fitness function
  • 相关文献

参考文献2

二级参考文献13

  • 1Liu H, Motoda H. Feature Selection for Knowledge Discovery and Data Mmining [M]. Boston: Kluwer Aedcemic Publishers, 1998.
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks, Perth, Australia, 1995. USA: IEEE, 1995: 1942-1948.
  • 3Eberhart R C, Shi Y. Particle Swarm Optimization: developments, Applications and Resources [C]// Proc. 2001 Congress on Evolutionary Computation, Scoul. Piscataway: IEEE Service Center, 2001: 81-86.
  • 4Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [C]//Proc. Conf. on Systems, Man, and Cybernetics, USA: IEEE Press, 1997, 5: 4104-4108.
  • 5Eberhart R C, Shi Y. Comparison between Genetic Algorithms and Particle Swarm Optimization [C]// Proc. 7th Int. Conf. on Evolutionary Programming, San Diego, CA, USA, 1998. Berlin: Springer, 1998: 611-616.
  • 6Van den berghf. Analysis of particle swarm optimizers [D]. South Africa: Department of Computer Science, University of Pretofia, 1989.
  • 7Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison-Welsley, 1989.
  • 8王珏.Rough Set约简与数据浓缩[J].高技术通讯,1997,7(11):40-45. 被引量:39
  • 9王珏,王任,苗夺谦,郭萌,阮永韶,袁小红,赵凯.基于Rough Set理论的“数据浓缩”[J].计算机学报,1998,21(5):393-400. 被引量:239
  • 10张鸿宾,孙广煜.Tabu搜索在特征选择中的应用[J].自动化学报,1999,25(4):457-466. 被引量:26

共引文献37

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部