期刊文献+

分布式环境中保护隐私数据挖掘算法研究 被引量:2

Research on the privacy preserving data mining in distributed environment
原文传递
导出
摘要 设计了将多参数随机干扰与Paillier同态加密技术相结合的ARPRD算法与基于SMGSP协议的PPVDR算法,分别研究了水平与垂直分布式环境中保护隐私数据挖掘算法,并通过实验证明两种算法可以在保护隐私的前提下,提高挖掘精确度与计算效率。 This paper designs a distributed privacy preserving association rules mining algorithm,which based on multi- parameter random disturbance and homomorphism encryption,and a vertical distributed environment privacy preserving association rules mining algorithm based on the protocol of SMGSP.Through experiments prove the two algorithms can improve accuracy of mining and computing efficiency while protecting privacy.
作者 刘晓丹
出处 《自动化与仪器仪表》 2016年第10期155-156,共2页 Automation & Instrumentation
关键词 分布式环境 保护隐私 数据挖掘算法 distributed environment privacy protection data mining algorithm
  • 相关文献

参考文献4

二级参考文献45

  • 1Hall Jiawei,Kamber M.数据挖掘概念与技术[M].范明,孟小峰等,译.北京:机械工业出版社,2001:149-176.
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases[C]//Proceedings of the 1993 ACM SIGMOD Conference. Washington D C: [ s. n ], 1993: 207 - 216.
  • 3Agrawal. R,Srikant R. Fast Algorithm for Mining Association Rules[C]//Proceedings of the 20th Very Large Data Bases (VLDB' 94) Conference. Santiago, Chile: [ s. n. ], 1994: 487 - 499.
  • 4Agrawal R,Srikant R. Fast Algorithm for Mining Association Rules in Large Databases[R]. San Jose, CA: IBM Almaden Research Center, 1994.
  • 5Park J S, Chen M S, Yu P S. An effective hash based algorithm for mining association rules[ C]//In: Proc. 1995 ACM SIGMOD. San Jose, CA: [ s. n. ], 1995 : 175 - 186.
  • 6Han J, Pei j, Yin Y. Mining frequent patterns without candidate generation [ C]//In Proceeding of the 2000 ACM SIGMOD Conference on Managerment of Data. Dallas, TX: [s, n. ] ,2000,.
  • 7Liu J ,Pan Y,Wang K,et al. Mining frequent item sets by opportunisitc projection[ C]//Proc. of the Eighth ACM SIGKDD Intl. Conf on Knowledge Discovery and Data Mining. Alberta, Canada: [s. n. ] ,2002:229 - 238.
  • 8Agarwal R, Aggarwal C, Prased V V V. A tree projection algorithm for generation of frequent itemsets[ J ]. J. Parallel and Distilbuted Computing, 2001,61 ( 3 ) : 350 - 371.
  • 9Savasere A, Omieeinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]//Proceedings of the 21st International Conference on Very Large Databases. Zurich,Switzerland: [ s. n. ], 1995:432 - 443.
  • 10Brin S, Motwani R, Ullman J D. Dynamic Itemset counting and implication rules for market basket data[ C]//Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data. Tucson,Arizona: [s. n. ],1997:255- 264.

共引文献79

同被引文献24

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部