摘要
为了快速获取候选项集的支持度,避免频繁访问数据库而造成效率低下的问题,在MSapriori算法的基础上引入数据立方体,提出DC_MSapriori算法。该算法无需多次扫描事务数据库,减少了I/O操作,降低了搜索开销。实验基于福州市鼓楼区各大医院周边的案事件数据,快速挖掘出犯罪时空模式,验证了算法的有效性。
To achieve rapid acquisition of candidate set support degree and avoid low efficiency issue due to accessing frequently to the database, the DC_MSapriori algorithm based on introducing the data cube for the MSapriori algorithm is proposed in this paper. The corresponding experiments are implemented to quickly mine space-time crime patterns based on case data around hospitals in Gulou district of Fuzhou. In this way, the new algorithm characteristics on transaction database scanning, search cost and the I/O operations are revealed and the effective-ness of the algorithm is validated.
出处
《测绘科学技术学报》
CSCD
北大核心
2016年第4期405-409,共5页
Journal of Geomatics Science and Technology
基金
国家"863"计划重大项目(2012AA12A208)
关键词
关联规则
多最小支持度
数据立方体
犯罪分析
时空模式
association rules
multiple minimum supports
data cube
crime analysis
spatial-temporal pattern