期刊文献+

基于数据立方体的多最小支持度关联规则在犯罪分析中的应用 被引量:5

Application of Association Rules with Multiple Minimum Supports Based on the Data Cube in Crime Analysis
下载PDF
导出
摘要 为了快速获取候选项集的支持度,避免频繁访问数据库而造成效率低下的问题,在MSapriori算法的基础上引入数据立方体,提出DC_MSapriori算法。该算法无需多次扫描事务数据库,减少了I/O操作,降低了搜索开销。实验基于福州市鼓楼区各大医院周边的案事件数据,快速挖掘出犯罪时空模式,验证了算法的有效性。 To achieve rapid acquisition of candidate set support degree and avoid low efficiency issue due to accessing frequently to the database, the DC_MSapriori algorithm based on introducing the data cube for the MSapriori algorithm is proposed in this paper. The corresponding experiments are implemented to quickly mine space-time crime patterns based on case data around hospitals in Gulou district of Fuzhou. In this way, the new algorithm characteristics on transaction database scanning, search cost and the I/O operations are revealed and the effective-ness of the algorithm is validated.
出处 《测绘科学技术学报》 CSCD 北大核心 2016年第4期405-409,共5页 Journal of Geomatics Science and Technology
基金 国家"863"计划重大项目(2012AA12A208)
关键词 关联规则 多最小支持度 数据立方体 犯罪分析 时空模式 association rules multiple minimum supports data cube crime analysis spatial-temporal pattern
  • 相关文献

参考文献6

二级参考文献35

  • 1张玉林,仲伟俊,梅姝娥.一类表内多概念间多层次关联规则挖掘算法及应用[J].计算机工程与应用,2001,37(14):91-92. 被引量:4
  • 2陈栋,刘兵,徐洁磐.KDD研究现状及发展[J].计算机科学,1996,23(6):38-42. 被引量:22
  • 3杨学兵,安红梅.一种高效的关联规则增量式更新算法[J].计算机技术与发展,2007,17(1):108-110. 被引量:5
  • 4[1]Krzysztof Koperski.A progressive refinement approach to spatiall data mining[R].Simon Fraser University,1999.
  • 5[2]Chen Guoqing,Wei Qiang,Etienne Kerre.Fuzzy Data Mining:Discovery of Fuzzy Generalized Association Rules[A].Recent Research Issues on Management of Fuzziness in Databases[C].Heidelberg and New York:Springer Verlag,2000:45-66.
  • 6[3]Koperski K,Han J.Discovery of Spatial Association Rules in Geographic Information Databases[A].Symposium on Spatial Databases(SSD95)[C],1995:47-66.
  • 7[4]George Brannon Smith,Susan M Bridges.Fuzzy Spatial Ddata Mining[A].NAFIPS2002[C],2002:184-189.
  • 8[5]Esen Kacar,Nihan Kesim Cicekli.Discovering Fuzzy Spatial Assciation Rules[J].Proc.SPIE,2002,47(2):94-102.
  • 9[6]Huang Yan.Discovering Colocation Patterns from Sparial Data Sets:A General Approach[J].IEEE Transactions on Knowledge and Data Engineering,2004,16 (12):1-30.
  • 10[7]Shekhar S,Schrater P,Raju W.Spatial Contextual Classifi cation and Prediction Models for Mining Geospatial Data[J].IEEE Transactions on Multimedia,2002,4(2):174-188.

共引文献22

同被引文献44

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部