期刊文献+

基于GPU的全波形并行LM分解算法 被引量:1

GPU Based Parallel LM Algorithm for Full-Waveform Decomposition
下载PDF
导出
摘要 波形分解是机载激光雷达全波形数据处理的重要基础工作,通过求解波形函数模型的参数,将波形数据利用具体的函数模型拟合出来,实现对全波形及其中各个子波形函数表达。LM(Levenberg-Marquardt)算法及其改进的算法是波形分解中对参数进行拟合求解的常用方法。针对LM算法在参数拟合计算的过程中存在大量迭代和矩阵运算,提出了基于线程块组和线程两级并行粒度的并行计算方案。将串行多次循环迭代求解参数改为单次并行计算取最佳值实现对参数的选择,将矩阵运算进行线程块的协同并行计算,实现了LM算法在通用计算图形处理器上的并行计算。实验证明,在规定阈值条件下,并行LM降低了算法的迭代次数,提高了波形分解LM算法的计算效率,为提高波形分解的处理效率提供了研究思路。 As an important basic work of the processing of airborne LiDAR full-waveform data, the decomposition of waveform can calculate parameters of waveform function model which could simulate the waveform of LiDAR waveform data, thus, the full-waveform and the sub-waveform can be presented by specific parameterized function. LM ( Levenberg-Marquardt) algorithm and LM-based improved algorithms are frequently used to calculate the parameter of function model in decomposition of waveform. In consideration of the iteration and matrix operation in LM, a parallel computational scheme based on block groups and blocks in GPU is presented. Serial iteration is turned into parallel calculating to choose the best parameter using parallel calculating the matrix by blocks in GPU. The experiment shows that this method can reduce the number of iteration, improve the computational efficiency of LM and provide a new idea on improving the efficiency of decomposition of waveform.
机构地区 信息工程大学
出处 《测绘科学技术学报》 CSCD 北大核心 2016年第4期421-425,共5页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41371436) 信息工程大学地理空间信息学院学位论文创新与创优基金项目(XS201506)
关键词 全波形激光雷达 波形分解 通用计算图形处理器 LEVENBERG-MARQUARDT算法 并行 full-waveform LiDAR decomposition of waveforms GPU Levenberg-Marquardt algorithm parallel
  • 相关文献

参考文献5

二级参考文献48

  • 1赖旭东,秦楠楠,韩晓爽,王俊宏,侯文广.一种迭代的小光斑LiDAR波形分解方法[J].红外与毫米波学报,2013,32(4):319-324. 被引量:27
  • 2杨柳,陈艳萍.一种新的Levenberg-Marquardt算法的收敛性[J].计算数学,2005,27(1):55-62. 被引量:41
  • 3Ackmann , F. 1999. Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry &Remote Sensing, 54:64--67
  • 4Baltsavias E P. 1999. A comparison between photogrammetry and laser scanning. 1SPRS Journal of Photogrammetry & Remote Sensing, 54 : 83 --94
  • 5Bilmes J A. 1998. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Department of Electrical Engineering and Computer Science. U. C. Berkeley TR-97-021
  • 6Dempster A P, Laird N M, Rubin DB, 1977. Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B ,39 ( 1 ), 1--38
  • 7Gamba P, Houshmand B. 2000. Digital surface models and building extraction : a comparison of IFSAR and LIDAR data. IEEE Transaction on Geoscience and Remote Sensing, 38 : (4) : 1959--1968
  • 8Hofton M A, Blair J B, Minster J. 2000. Decomposition of laser altimeter Waveforms. IEEE Transactions on Geoscience and Remote Sensing, 38 : ( 4 ) 1989--1996
  • 9Oliver J J, Baxter R A, Wallace C S. 1996. Unsupervised learning using MML. Machine Learning. Proceedings of the Thirteenth International Conference ( ICML 96 ). Morgan Kaufmann Publishers, San Francisco CA USA
  • 10Optech: ALTM Waveform Digitizer Operation and Processing Manual ALTM 3100. 2006

共引文献110

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部