期刊文献+

一种基于发送队列长度的自适应功率控制机制

An Adaptive Power Control Mechanism Based on Send Queue Length
下载PDF
导出
摘要 无线多跳网络具有信道时变性强、拓扑动态变化等特点,需要简单高效的功率控制机制。发射功率影响数据发送速率,而基于发送队列长度的功率控制机制存在可行解。为此,结合无线多跳网络中间节点需要协助其他节点进行数据转发的特点,基于发送队列长度,提出一种功率控制机制。该机制考虑了中间节点转发时发送队列缓冲区溢出丢包的问题,通过扩展控制报文携带发射功率和可容忍噪声等信息动态调整功率,提高信道的空间复用率,优化网络的吞吐量和端到端时延。基于NS2的仿真结果表明,与POWMAC机制及ATPMAC机制相比,该机制的吞吐量提高20%~30%,端到端时延降低10%~20%。 Because of the characteristics of strong time variability channels and dynamic changed topology in wireless multi-hop network, power control mechanism should be simple and efficient. The theory proves that the transmit power affects the data send rate. There is a feasible solution to the power control mechanism based on the length of the send queue. According to the fact that intermediate nodes of wireless multi-hop network need help other nodes to carry out the data forwarding,based on the length of the send queue, this paper proposes a power control mechanism. The mechanism considers the problem of buffer overflow packet loss of send queue when intermediate nodes forward information, dynamicly adjusts power through extension of control message carrying transmit power,information of tolerant noise and so on, thus improves the reusability of space, optimizes the network throughput and the end-to-end delay. Simulation results on NS2 show that, compared with POWMAC mechanism and ATPMAC mechanism, the throughput of the proposed mechanism is higher by 20% ~ 30% , and the end-to-end delay is lower by 10%- 20% .
出处 《计算机工程》 CAS CSCD 北大核心 2016年第12期112-117,123,共7页 Computer Engineering
基金 国家自然科学基金(61572474) 国家科技重大专项子课题(2010ZX03003-004-03) 国家科技支撑计划项目(2012BAH45B01) 江苏省未来网络创新研究院未来网络前瞻性研究项目(BY2013095-5-01)
关键词 无线多跳网络 功率控制 发送队列 多跳网络 数据转发 控制报文 wireless multi-hop network power control send queue multi-hop network data forwarding control message
  • 相关文献

参考文献2

二级参考文献100

  • 1Gobriel S, Melhem R, Mosse D. A unified interference/collision analysis for power-aware ad hoc networks. In: Proc. of the IEEE INFORCOM 2004. 2004. 608-618.
  • 2Ding P, Holliday J, Celik A. Modeling the performance of a wireless node in multi-hop ad hoe networks. In: Proc. of the ICWNCMC 2005. 2005. 1424-1429.
  • 3Deng J, Liang B, Varshney PK. Tuning the carrier sensing range of IEEE 802.11 MAC. In: Proc. of the IEEE GLOBECOM 2004. 2004. 2987-2991.
  • 4Zhu H, Guo X, Yang LL, Conner WS. Leveraging spatial reuse in 802.11 mesh networks with enhanced physical carrier sensing. In: Proc. of the IEEE ICC 2004. 2004. 4004-4011.
  • 5Ma H, Alazemi HMK, Roy S. A stochastic model for optimizing physical carrier sensing and spatial reuse in wireless ad hoc networks. In: Proc. of the IEEE MASS 2005. 2005. 622-629.
  • 6Yang X, Vaidya NH. On the physical carrier sense in wireless ad hoc networks. In: Proc. of the IEEE INFOCOM 2005. 2005. 2525-2535.
  • 7Zhai H, Fang Y. Physical carrier sensing and spatial reuse in multirate and multihop wireless ad hoc networks. In: Proc. of the IEEE INFOCOM 2006.2006. 1-12.
  • 8Kim TS, Lim H, Hou JC. Improving spatial reuse through tuning transmit power, carrier sense threshold, and data rate in multihop wireless networks. In: Proe. of the ACM MOBICOM 2006. 2006. 366-377.
  • 9Yang Y, Hou JC, Kung LC. Modeling of physical carrier sense in multihop wireless networks and its use in joint power control and carrier sense adjustment. In: Proc. of the IEEE INFOCOM 2007. 2007. 2331-2335.
  • 10Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal of Select. Areas Communication, 2000,18(3).

共引文献730

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部