期刊文献+

一种狼群智能算法及收敛性分析 被引量:24

A smart wolf pack algorithm and its convergence analysis
原文传递
导出
摘要 针对狼群算法求解复杂函数时容易陷入局部极值、计算耗费大、学习能力差等局限性,提出一种狼群智能算法.首先,通过构建智能猎杀行为提高算法自适应学习能力,降低算法的计算耗费,构建双高斯函数更新法以增强算法全局搜索能力;然后,运用马尔科夫过程证明狼群智能算法的收敛性;最后,对多种典型测试函数进行仿真实验并与多种智能算法进行对比分析.实验结果表明,所提出算法具有全局收敛性强、计算耗费低、寻优精度高等优势. In order to improve the searching performance(global optimal, computational cost, learning ability etc.) of wolf pack algorithm in solving complex functions, a novel algorithm — Smart wolf pack algorithm(SWPA) is proposed.First of all, intelligent hunting is proposed to improve the adaptive learning ability and reduce the computational cost.Then the bimodal Gaussian regeneration method is applied to enhance the global searching ability. The, Markov process is used to prove the convergence of SWPA. Finally, compared with some typical evolutionary algorithms, simulation on several Benchmark functions is analyzed. Results show that the SWPA has excellent searching performance on the global optimization ability, the convergence rate and the optimal precision.
出处 《控制与决策》 EI CSCD 北大核心 2016年第12期2131-2139,共9页 Control and Decision
基金 国家自然科学基金项目(71601183)
关键词 狼群智能算法 智能猎杀 双高斯函数 马尔科夫过程 smart wolf pack algorithm intelligent hunting bimodal Gaussian Markov process
  • 相关文献

参考文献4

二级参考文献32

  • 1冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995:1942-1948.
  • 5Kalyan Veeramachneni, Lisa O, Ganapathi K. Probabilistically driven particle swarms for optimization of multi valued discrete problems: Design an analysis [C]. Proc of IEEE Swarm Intelligence Symposium (SIS). Honolulu, 2007: 141-149.
  • 6Van den Bergh F. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 7Engelbrecht A P, Masiye B S, Pampara G. Niching ability of basic particle swarm optimization algorithms [C]. Proc of IEEE Swarm Intelligence Symposium (SIS). Pasadena, 2005: 397-400.
  • 8Paul S Andrews. An investigation into mutation operators for partiele swarm optimization [J]. IEEE Congress on Evolutionary Computation, Vaneouver, 2006, 16(21): 1044-1051.
  • 9Higashi N, Iba H. Particle swarm optimization with Gaussian mutation [C]. Proc of IEEE Swarm Intelligence Symposium(SIS), 2003 : 71-79.
  • 10HU X H, Eberhart R C. Adaptive particle swarm optimization~ Detection and response to dynamic system [C]. Proc of the IEEE Conf on Evolutionary Computation. Honolulu, 2002: 1666-1670.

共引文献1124

同被引文献243

引证文献24

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部