期刊文献+

一种结合空间信息和稀疏字典优化的目标跟踪算法 被引量:3

An object tracking algorithm combining spatial information and sparse dictionary optimization
原文传递
导出
摘要 针对复杂场景中目标表观变化引起的跟踪漂移问题,提出一种新的基于稀疏表示的目标跟踪算法.该算法通过稀疏性和空间相关性正则约束得到一种优化的目标代价函数,利用拉格朗日对偶理论和加速近端梯度方法完成字典优化,并利用最大池化理论和空间金字塔方法得到降维的且包含更多空间信息的目标模板系数和候选样本系数.实验结果表明,所提出的算法在背景干扰、光照变化、形变、运动模糊、严重遮挡等多种复杂场景中都能取得较为鲁棒的跟踪效果. Aimming at the problem of tracking drift caused by object appearance change in complex scene, a novel object tracking algorithm based on sparse representation is proposed. An optimized objective cost function is designed with the sparsity and spatial correlation regularization constraint. The Lagrange dual theory and the accelerate proximal gradient approach are used to complete the dictionary optimization. By using the maximum pooling theory and the spatial pyramid method, the coefficients of the object template and candidate samples with the reduced dimension and more spatial information are obtained. Experimental results show that the proposed algorithm can perform robust tracking effect in a variety of complex scene, such as background clutters, illumination variation, deformation, motion blur, heavy occlusion,and so on.
出处 《控制与决策》 EI CSCD 北大核心 2016年第12期2170-2176,共7页 Control and Decision
基金 武器装备预先研究基金项目(51306030205) 航空科学基金项目(20131953022)
关键词 目标跟踪 稀疏表示 空间信息 字典优化 object tracking sparse representation spatial information dictionary optimization
  • 相关文献

参考文献1

二级参考文献19

  • 1Yilmaz A, Javad O, Shah M. Object tracking: A survey[J]. ACM Computer Survey, 2006, 38(4): 1-45.
  • 2Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. New York, 2006: 798-805.
  • 3Ross D, Lira J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vis, 2008, 77(1/2/3): 125-141.
  • 4Wang D, Lu H C, Chen Y W. Incremental MPCA for color object tracking[C]. Int Conf on Pattern Recognition. Istanbul, 2010: 1751-1754.
  • 5Hu W M, Li X, Zhang X, et al. Incremental tensor subspace learning and its applications to foreground segmentation and tracking[J]. Int J of Computer Vision, 2011, 91(3): 303-327.
  • 6Kwon J, Lee K M. Visual tracking decomposition[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. San Francisco, 2010: 1269-1276.
  • 7Mei X, Ling H B. Robust visual tracking using 11 minimization[C]. Porc of IEEE Conf on Computer Vision. Kyoto, 2009: 1436-1443.
  • 8Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]. Porc of IEEE Conf on Computer Vision and Pattern Recognition. Anchorage, 2009: 983-990.
  • 9Avidan S. Support vector tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
  • 10Fu K, Gong C, Qiao Y, et al. One-class support vector machine-assisted robust tracking[J]. J of Electronic Imaging, 2013, 22(2): 023002.

共引文献6

同被引文献6

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部