摘要
设I^m为m维标准方体,K'为单纯复形K的重心重分.将K'上的锥形按一定规则逐片线性嵌入I^m的典范单纯剖分中,从而得到K对应的一类方体复形cc(K).根据cc(K)的构造过程,计算了cc(K)的f-向量,即各个维数的胞腔个数.通过投射(D^d)m→J^m的拉回,可定义cc(K)上的moment-angle复形Z_(K.d).将Z_(K,d)放入轨道构型空间的框架中,得到轨道构型空间F_G(Z_(K,d,n)).由F_G(Z_(K,d,n))的组合结构和著名的Inclusion-exclsion原理,给出了轨道构型空间FG(Z_(K,d,n))的欧拉示性数利用f-向量表示的计算公式,并且提供了一种计算Z_(K,d)欧拉示性数的新方法.
Let I^m be the m-dimensional standard cube and K' the barycentric subdivision of simplicial complex K. There is a PL (piecewise linear) embedding of the cone over K' to the canonical simplicial subdivision of I^m by some rules. Then we obtain a kind of cubical complex cc(K) associated to K. According to the construction of cc(K), we calculate the f-vector of cc(K), i.e., the number of cells in every dimension. There is a definition of moment-angle complex Zg,d over cc(K) by the pullback of the projection (Dd)TM→ Im. Putting Zg,d into the framework of orbit configuration spaces, we get the orbit configuration space FG(ZK,d, n). By using the famous Inclusion-exclusion Principle and the combinatorial structure of FG(K,d,n), we obtain the formula for the Euler characteristic of orbit configuration space FG(ZK,d,n) in terms of f-vector. In addition,we provided a new method of calculating the Euler characteristic of moment-angle complex K,d.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第6期102-110,共9页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11426162)