摘要
针对和声搜索算法的早期收敛速度快,后期收敛慢,容易陷入局部最优解的问题,本文提出了一种改进的全局和声搜索算法.该算法对标准和声搜索算法作了三点改进,首先在和声记忆库初始化时采用反向学习策略,提高初始解的质量,提高收敛速度,其次,采用动态方式调整参数,第三,利用当前和声记忆库中的全局最优解产生新解,提高全局搜索能力.采用该算法对6个标准的测试函数进行优化,结果表明,该算法避免算法的早熟和增强算法的全局搜索能力,具有较好的优化性能.
出处
《赤峰学院学报(自然科学版)》
2016年第21期15-17,共3页
Journal of Chifeng University(Natural Science Edition)
基金
安徽省教育厅自然科学基金重点项目(KJ2016A308)