期刊文献+

基于生活场景的逻辑回归推荐算法 被引量:4

Recommendations Based on Logistic Regression by Exploiting Life-stage Change of Users
下载PDF
导出
摘要 由于现有的推荐系统未考虑生活场景随时间变化对购买行为的影响,本文提出基于生活场景的推荐系统。首先利用场景预测模型预测用户当前的生活场景,再结合该生活场景利用联合概率模型对候选产品打分排名,然后向该用户推荐相应的产品。针对生活场景特定领域,采用多元逻辑回归算法预测当前生活场景。实验结果表明,本文提出的基于生活场景的逻辑回归推荐算法提高了推荐精度。 Recently, the large impact of life stage on consumer' s purchasing behaviors has not taken into consideration. In this paper, we introduce a recommender system based on life-stage. Firstly, we label the life stage of the consumer by the model of lif-stage, then rank the candidate products with the predicted life stage by joint probability model and then recommend proper products. In the domain where the gap of the life stage is deterministic, we develop an efficient solution to do prediction using muhinomial logistic regression algorithm. Our experiment results show that the proposed approach improves the accuracy of the recommendation.
出处 《计算机与现代化》 2016年第12期38-41,共4页 Computer and Modernization
关键词 逻辑回归 时间效应 生活场景 logistic regression time effect life stage
  • 相关文献

参考文献3

二级参考文献134

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献726

同被引文献33

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部