摘要
微动特征是弹道目标识别的重要特征之一。针对锥体目标模型,提出了一种基于宽窄带相结合的混合体制雷达网的微动参数提取方法。首先,在详细分析锥体目标等效散射中心微多普勒变化规律的基础上,利用微多普勒和差比实现了不同体制雷达回波中散射中心的匹配关联。其次,构建宽窄带微多普勒信息联合方程组,提取出锥体目标的进动角、底面半径、锥体高度等参数,并进一步对目标参数估计精度随曲线参数提取误差变化的关系做了比较研究。最后,仿真结果表明,在曲线参数提取值存在一定误差时,目标参数估计精度仍然较高。
Micro-motion feature is one of the crucial features used for ballistic target recognition. Aimed at the model of cone-shaped target,a novel algorithm based on hybrid-scheme radar network combining wideband radar with narrowband radar is proposed to extract the micro-motion parameters. First,on the basis of analyzing the micro-Doppler change rule of the equivalent scattering centers on the precession cone-shaped target in detail,each scattering center in different system radar echoes is matched and identified by utilizing the micro-Doppler sum-difference ratio. Second,the associated systems of equations of micro-Doppler information are established,and parameters including the precession angle,radius of undersurface and height of coneshaped target are extracted jointly. Furthermore,comparative study on the relationship between parameter estimation accuracy and error change of curve parameter extraction is made. Finally,the simulation results show that even though errors occur in curve parameter extraction,the parameter estimation accuracy of target is still enough.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016年第10期2250-2257,共8页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金(61372166)
陕西省自然科学基础研究计划(2014JM8308)~~
关键词
弹道目标
进动特征
微多普勒
目标识别
雷达组网
ballistic object
precession feature
micro-Doppler
object recognition
radar networking