期刊文献+

共存碳源对克雷伯氏菌NⅢ2发酵蔗糖产絮凝剂的影响 被引量:5

Effects of co-carbon source compounds on production of bioflocculant by Klebsiella sp.NⅢ2 with sucrose
下载PDF
导出
摘要 研究了共存碳源对克雷伯氏菌NIII2以蔗糖为主要碳源发酵产絮凝剂的影响。实验结果表明:柠檬酸为共存碳源时,克雷伯氏菌NIII2分泌絮凝剂过程中容易产酸,使得絮凝剂的产量和碳源转化率都较低。当丁二酸、乙酸、乳酸为共存碳源时,发酵液pH均高于7.5,絮凝剂产量有所提高,最高可达10.87g/L,碳源转化率也较高,为43.48%。与柠檬酸为共存碳源相比,当投加丁二酸时,克雷伯氏菌NIII2所产微生物絮凝剂中蛋白质与糖含量比值提高了33%,絮凝剂的Zeta电位值由-60.00mV升高至-28.07mV,絮凝剂分子粒径广泛分布在0~300μm之间且大粒径分子所占比例增加,聚合度加大,絮凝剂表面形貌呈现结块团状无定型结构,从而提高絮凝剂的活性和性能。该微生物絮凝剂投加量为4.0mg/L,对2g/L高岭土的SS去除率可达97.3%。 Effects of co-carbon source compounds on the production of bioflocculant by Klebsiella sp. NIII2 with sucrose were investigated. The results showed that with citrate as co-carbon source compounds in fermentation medium, NIII2 was easy to produce acid, which often resulted in decrease of the biofloceulant yield and carbon conversion rate. With succinic acid, acetate or lactate as co-carbon source, the values of pH were higher than 7.5, the yield could reach the highest of 10.87 g/L and the carbon conversion rate was as high as 43.48%. Compared with citrate as co-carbon source, succinate as co-carbon source could make the ratio of protein and saccharide increase by 33% ; Zeta potential flocculation activity was improved from - 60.00 mV to - 28.07 mV ; the particle size of bioflocculant widely distributed in the range of 0 - 300 μm and the proportion of large particle size was augmented. With the increasing high degree polymerization of the bioflocculant and with flocculation surface rendering agglomerate amorphous structure, it improved the flocculation activity and performance. With a 4.0 mg/L dose of such bioflocculant, the removal rate of the suspended solid in kaolin solution (2 g/L) was up to 97.3%.
出处 《工业微生物》 CAS CSCD 2016年第6期41-46,共6页 Industrial Microbiology
基金 陕西省重点科技创新团队建设计划(编号:2013KCT-13) 国家自然科学基金(编号:51278405)
关键词 共存碳源 克雷伯氏菌NIII2微生物絮凝剂 碳源转化率 co-carbon source Klebsiella sp. NIII2 microbial flocculant carbon conversion rate
  • 相关文献

参考文献3

二级参考文献22

  • 1牟占军,葛庆仁.谷氨酸菌体的絮凝及分离[J].化学工程,1996,24(3):53-58. 被引量:11
  • 2云逢霖,崔焕明.谷氨酸发酵液絮凝除菌的研究[J].微生物学通报,1996,23(2):91-94. 被引量:13
  • 3Salehizadeh H, Shojaosadsti S A. Extracellular biopolymeric flocculants Recent trends and biotechnological importance. Biotechnology Advances. 2001,19 : 371 - 385
  • 4Kurane R, Hatamochi K, Kakuno T, et al. Production of a bioflocculant by Rhodococcus erythropolis S- 1 grown on alcohols.Biosci Biotechnol Biochem. 1994, 58:428 - 429
  • 5Pironcheva G L. The effect of magnesium ions during beer fermentation. Cytobios. 1998, 94 : 135 - 198
  • 6Endo T, Nakamura K, Takahashi H. Pronase-sussceptible floc forming bacteria: relationship between flocculation and calcium ion. Agric Biol Chem. 1976, 40(11) :2289 - 2295
  • 7Kurane R, Takeda K, Suauki T. Screening for and characteristics of microbial flocculants. Agric Biol Chem. 1986, 50 : 2301 -2307
  • 8Toeda K, Kurane R. Microbial flocculant from Alcaligenes cupidus KT201. Agric Biol Chem. 1991,55:2793 - 2799.
  • 9Takagi H, Kadowaki K. Flocculant production by Paecilomyces sp., Taxonomic studies and culture conditions for flocculant production. Agric Biol Chem. 1985, 49(11):3151-3157
  • 10Tan, A W H. A simplified method for the preparation of pure UDP[14C] Glucose. Biochem Biophys Acta. 1979, 582:543- 547

共引文献138

同被引文献45

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部