期刊文献+

退火温度对多铁性YFeO_3薄膜的结构、光学及磁学性能的影响

Influence of Annealing Temperature on Structures,Spectroscopic and Magnetic Properties of Multiferroic YFeO_3 Films
原文传递
导出
摘要 采用溶胶–凝胶旋涂法在(111)掺钇氧化锆(YSZ)基片上制备了多铁性YFeO3薄膜,并用X射线衍射仪、原子力显微镜、紫外–可见分光光度计及磁性测量系统,研究了退火温度对YFeO3薄膜的微观结构、光学和磁学性能的影响。结果表明:YFeO3薄膜具有正交钙钛矿的多晶结构,退火温度高于1123K时,薄膜产生了(002)、(311)面的择优取向生长;但当退火温度提高至1223K时,由于再结晶,薄膜晶粒尺寸及表面粗糙度显著增大;YFeO3薄膜在可见光区具有明显的光响应性能,其带隙约为2.21~2.29eV;同时YFeO3薄膜具有室温铁磁性,提高退火温度,样品磁化强度变大,而矫顽力减小。 Multiferroic YFeO3 films were prepared on (111) yttrium stabilized zirconia (YSZ) substrates by a sol-gel spin coating method. The influence of annealing temperature on the micro-structures, optical and magnetic properties of the YFeO3 films was investigated by means of X-ray diffractometer, atomic force microscope, UV-Vis spectrophotometer and superconducting quantum interference device, respectively. The results show that the poly-crystalline YFeO3 films with an orthorhombic perovskite structure are formed. The YFeO3 films show the (002) and (311) preferred orientation growth when the annealing temperature is 〉 1 123 K. The grain size and surface roughness of the film increase obviously when the annealing temperature increases to 1 223 K. The YFeO3 films possess a visible-light response with the energy band gaps between 2.21 and 2.29 eV. In addition, the YFeO3 films also show a ferromagnetic behavior at room temperature. The magnetization of the YFeO3 film increases and the coercive force decreases with the increase of annealing temperature.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第12期1694-1699,共6页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51373134 21406176 21276207)资助
关键词 多铁性 铁酸钇薄膜 溶胶-凝胶旋涂法 磁性 multiferroic yttriu orthoferrite film sol-gel spin coating method magnetic properties
  • 相关文献

参考文献4

二级参考文献168

  • 1迟振华,靳常青.单相磁电多铁性体研究进展[J].物理学进展,2007,27(2):225-238. 被引量:29
  • 2Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Pbys Rev B, 2006, 73:220401 (R).
  • 3Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99:157201.
  • 4Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagome staircase. Phys Rev Lett, 2004, 93:247201.
  • 5Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett, 2005, 95:087205.
  • 6Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55- 58.
  • 7Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92:257201.
  • 8Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R).
  • 9Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1-xYxMnO3. Phys Rev B, 2006, 75:035118.
  • 10Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98:147204.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部