期刊文献+

一种改进的Yeoh超弹性材料本构模型 被引量:27

AN IMPROVED YEOH CONSTITUTIVE MODEL FOR HYPERELASTIC MATERIAL
原文传递
导出
摘要 橡胶通常被看作一种不可压缩各向同性的超弹性材料,其本构模型通常用应变能密度方程表示。针对Yeoh模型偏软的特性,该文提出了一种改进的Yeoh超弹性材料本构模型。基于连续介质力学大变形理论,给出了改进的Yeoh模型在三种特殊变形模式下的应力-应变关系,并与原有的Yeoh模型和实验数据进行了对比。结果表明:改进的Yeoh模型在保持Yeoh模型体现反"S"形应力-应变关系的前提下,有效地克服了Yeoh模型在预测等双轴拉伸曲线时"偏软"的特性。在较大的应变范围内能够同时准确地预测单轴、平面和等双轴拉伸-压缩的应力-应变关系,具有较大的工程应用价值。 Rubber is generally regarded as incompressible, isotropic, and hyperelastic material whose constitutive model is usually described in terms of strain energy density functions. An improved Yeoh model for hyperelastic material is proposed in this paper to improve the ‘soft' property of the Yeoh model. The strain-stress relations of three special deformation modes for the proposed model are presented based on the large deformation theory of continuum mechanics, and compared with those obtained by the original Yeoh model and by the experiment data. It is found that: the improved Yeoh model represents an inversed "S" shape of the strain-stress relation, and effectively overcomes the ‘soft' property of Yeoh model when predicting the strain-stress curve of equibiaxial extension at the same time. The proposed model precisely predicts the strain-stress relations of uniaxial, planar and equibiaxial tension-compression in a large strain range and has great values in engineering application.
出处 《工程力学》 EI CSCD 北大核心 2016年第12期38-43,共6页 Engineering Mechanics
基金 国家自然科学基金项目(51275265 51175286)
关键词 橡胶 超弹性 本构 应变能密度 Yeoh模型 rubber hyperelastic constitutive law strain energy function Yeoh model
  • 相关文献

参考文献3

二级参考文献20

  • 1任旭春,姚振汉.一种新的橡胶-帘线复合材料的模型及其参数识别方案[J].工程力学,2006,23(12):180-187. 被引量:8
  • 2危银涛.轮胎热--力学分析及耐久性评价.哈尔滨工业大学博士学位论文[M].哈尔滨,1997..
  • 3Chayltcn D J, Yang J. A review of methods to characterize rubber elastic behavior for use in finite element analysis [J]. Rubber chemistry and technology, 1994, 67(3): 481--503.
  • 4Miller K. Testing elastomers for hyperelastic material models in frnite element analysis [M]. Rubber Technology International. UK: UK & International Press, 1999.
  • 5Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a review [J]. Rubber chemistry and technology, 2000, 73(3): 504--520.
  • 6Yeoh O H. Some forms of the strain energy for rubber [J]. Rubber Chemistry and technology, 1993, 66(5): 754-- 771.
  • 7Ogden R W. Nearly isotropic elastic deformations: application to rubberlike solids [J]. Journal of the Mechanics and Physics of Solids, 1978, 26(1): 37--57.
  • 8Rivlin R S. The elasticity of rubber [J]. Rubber Chemistry and Technology, 1992, 65(3): 51 --67.
  • 9Feng X, Yah X, Wei YinTao. Analysis of extension propagation process of an interface crack between belts of a radial tire using a finite element method [J]. Appl. Math. Modeling, 2004, 28(2): 145--162.
  • 10Wei Y T, Nasdala L, Rothert H. Analysis of tire rolling contact response by REF model [J]. Tire Science and Technology, 2004, 32(4): 214--235.

共引文献151

同被引文献197

引证文献27

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部