期刊文献+

纤维类别对三维浅交弯联复合材料弯曲性能影响的数值模拟

Simulation of influence of fiber variety to bending properties of 3D curved shallow-crossing linking woven composites
下载PDF
导出
摘要 借助绘图软件PRO/E建立一种三层三维浅交弯联机织复合材料结构细观模型,并借助大型有限元软件ANSYS对该复合材料的弯曲力学性能进行模拟分析。分别将纤维材料定义为玻璃纤维和碳纤维,树脂基体定义为环氧树脂E51。对比在1kN的弯曲载荷作用下,两种不同类别纤维作为增强体时的复合材料、纤维增强体和树脂基体的应力、应变分布情况,预测复合材料的破坏形式,并与实验结果定性对比。结果表明,玻纤作为增强体时比碳纤维表现出更大的弯曲应力和弯曲应变,更容易发生破坏;1kN弯曲载荷作用下复合材料的破坏形式主要为纤维增强体的变形,树脂基体的碎裂以及纤维增强体和树脂基体间的脱粘。 A new structural model,was built to study the bending properties,with the help of finite element software ANSYS Workbench,of three-dimensional curved shallow-crossing linking woven composites(3Dcomposites),using mapping software Pro/Engineer.Material of fibers were defined as E-glass fiber and carbon fiber respectively,resin matrix was defined as epoxy resin E51.The distribution of stress strain on fibers,resin and 3Dcomposites,as well as the failure mode,was discussed and predicted respectively,under 1kN bending loads.Simulated result is compared with test result qualitatively.The results show that,the 3Dcomposites with E-glass fiber as fiber-reinforcement present larger stress and strain and damage more easier than the carbon one;the main failure mode of the 3Dcomposites was deformation of fibers,separation between fibers and resin and resin fracture,under 1kN bending loads.
出处 《功能材料》 EI CAS CSCD 北大核心 2016年第11期11056-11060,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51302110,51203062) 江苏省产学研前瞻性联合研究资助项目(BY2013015-31)
关键词 纤维类别 三维浅交弯联 弯曲性能 数值模拟 碳纤维 玻璃纤维 fiber variety 3D curved shallow-crossing linking bending properties numerical simulation carbon fiber E-glass fiber
  • 相关文献

参考文献3

二级参考文献27

  • 1张厚江,陈五一,陈鼎昌.碳纤维复合材料切削机理的研究[J].航空制造技术,2004,47(7):57-59. 被引量:42
  • 2仲伟虹,张佐光,宋焕成.单一及混杂的多向复合材料热膨胀系数的研究及零膨胀的设计[J].航空学报,1993,14(11). 被引量:3
  • 3杨振宇,卢子兴,刘振国,李仲平.三维四向编织复合材料力学性能的有限元分析[J].复合材料学报,2005,22(5):155-161. 被引量:41
  • 4周光明,钟志珊,张立泉,匡宁.整体中空夹层复合材料力学性能的实验研究[J].南京航空航天大学学报,2007,39(1):11-15. 被引量:35
  • 5Tien W S, Yu H P. Low velocity impact responses of hollow core sandwich laminate and interply hybrid laminate[J]. Compos Struct, 2004, 64(8): 189-198.
  • 6Dasgupta A, Agarwal R K, Bhandarkar S M, Three-dimensional modeling of woven-fabric composites for effective thermo-mechanical and thermal properties[J]. Compo Sci Technol, 1996, 56(3): 209-223.
  • 7Vuure A W, Ivens J A, Verpoest I. Mechanical properties of composite panels based on woven sandwich fabric performs[J]. Composites Part A, 2000, 31(7): 671-680.
  • 8Hosur M V, Abdullah M, Jeelani S. Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid face sheets[J]. Composite Structures, 2004, 65(1): 103-115.
  • 9Ko F K, Du G W. Processing of textile preforms[M]//Gutowski T G, ed. Advanced Composites Manufacturing. New York: John Wiley & Sons Inc, 1997: 182-187.
  • 10Vaidya U K, Hosur M V, Earl D, Jeelani S. Impact response of integrated hollow core sandwich composite panels[J]. Compos Part A, 2000, 31(8): 761-772.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部