期刊文献+

三维非线性弹性壳体的维数分裂法

A Dimensional Splitting Method for 3D-nonlinear Elastic Shell
下载PDF
导出
摘要 本文给出了一个建立在半测地坐标系下的非线性弹性壳体的维数分裂方法,它把一个非线性弹性算子,在这个坐标系下,分裂为一个称为膜弹性算子和弯曲弹性算子之和.假设非线性弹性壳体的解可以展开为关于贯裁变量的Taylor级数,那么本文建立了关于首项的2D-3C非线性偏微分方程组,证明其解的存在性,同时给出了两个关于一阶项和二阶项对于首项的函数,从而无需求解偏微分方程即可得到一阶项和二阶项. In this paper, a dimensional splitting method for three dimensional nonlinear elastic shell is established under a semi-geodesic coordinate system (S-coordinate). Then the nonlinear elastic operator can be decomposed into the sum of a membrane and bending operators in the S-coordinate system. Assume that the solution of the 3D nonlinear elastic shell can be expressed as the Taylor expansion with respect to the transverse variable, the approximation modelling with one-order and two order respectively are established. Meanwhile, we give the 2D-3C partial differential equations satisfied by the terms of zero-order, prove the existence of solution, give the related functions in the terms of first and second orders with respective to the term of zero-order without solving partial differential equations to obtain the terms of first and second orders.
作者 章胤 李开泰
出处 《工程数学学报》 CSCD 北大核心 2016年第6期551-577,共27页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(91330115 11371289 11371288)~~
关键词 非线性弹性壳体 维数分裂方法 半测地坐标系 2D-3C偏微分方程 nonlinear elastic shell dimensional splitting method semi-geodesic coordinate system 2D-3C partial differential equation
  • 相关文献

参考文献1

二级参考文献27

  • 1[19]Ciarlet P G,Lods V.Asymptotic analysis of linearly elastic shells:general membrane shells.J Elasticity,1996,43:167-197
  • 2[20]Ciarlet P G,Lods V,Miara B.Asymptotic analysis of linearly elastic shells,Ⅱ:Justification of flexural shell equations.Arch Rational Mech Anal,1996,136:163-190
  • 3[21]Chapelle D.Some new results and current challenges in the finite element analysis of shells.Acta Numerica,2001,10:215-250
  • 4[22]Lods V,Mardare C.Asymptotic justification of the Kirchhoff-Love hypotheses for a linearly elastic clamped shell.J Elasticity,2000,58:105-154
  • 5[23]Miara B,Sanchez-Palencia E.Asymptotic analysis of linearly elastic shells.Asymptotic Analysis,1996,12:41-54
  • 6[24]Mardare C.Asymptotic analysis of linearly elastic shells:Error estimates in the membrane case.Asymptotic Analysis,1998,17:31-51
  • 7[25]Budiansky B,Sanders J L.On the "best" first-order linear shell theory.In:Prager W,ed.Progress in Applied Mechanics,Anniversary Volume.New York:MacMillan,1967.129-140
  • 8[26]Li K T,Huang A X.Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control.Comp Meth Appl Mech and Eng,1983,41:175-194
  • 9[27]Li K T,Huang A X.Tensor Analysis and Its Applications (in Chinese).Beijing:Science Press,2004
  • 10[1]Vlasov V Z.The basic differential equations in the general theory of elastic shell.Prikl Mat Mek,1944,8:109-140

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部