期刊文献+

悬臂梁不同单元类型计算误差分析 被引量:1

Calculation error analysis of cantilever beam of different element types
下载PDF
导出
摘要 为了研究悬臂梁用不同单元类型计算应力结果与真实测量值的误差和该误差产生的影响因素。首先,用ABAQUS有限元软件对悬臂梁结构进行壳单元建模和实体单元建模,分别计算出Mises应力值,再用经典材料力学方法计算出相同情况下悬臂梁Mises应力值,然后用电阻应变测试法计算出悬臂梁的真实应力值,计算出各种应力计算方法相对于真实测量值的误差。最后,分别计算不同厚度悬臂梁,用壳单元和实体单元分别计算出的Mises应力值,将实体单元计算应力值代替真实测量应力值,得到壳单元计算结果相对于实体单元计算结果的相对误差。研究结果表明,悬臂梁用实体单元计算出的Mises应力值相对于壳单元更加接近于真实测量值。随着悬臂梁厚度的增加,壳单元计算结果的精度越来越小。对于同一厚度的悬臂梁,不同位置处壳单元计算应力值对于真实值的相对误差近似为一常数。 To study the error of calculated stress results and real measurement values of the cantilever beam with different element types and the its influencing factors, firstly, ABAQUS finite element soft-ware was used to model the shell element and solid element, and the stress value of Mises was calcu-lated. Then the classical mechanics of materials method was used to calculate the same cantilever beam under Mises and the resistance strain test method was used to calculate real cantilever stress val-ues. Finally, the shell element and the solid element of different thickness of the cantilever beam were used to calculate the Mises stress value. The results show that the Mises stress value calculated by the solid element is more close to the true value than the shell element. With the increase of the thickness of the cantilever beam, the accuracy of the calculation results of the shell element is getting smaller and smaller. For the same thickness of the cantilever beam, the relative error of the calculated stress value of the shell element at different position of the shell element is a constant.
出处 《河北工程大学学报(自然科学版)》 CAS 2016年第4期5-9,共5页 Journal of Hebei University of Engineering:Natural Science Edition
基金 国家自然科学基金资助项目(S2014GAT013)
关键词 悬臂梁 壳单元 实体单元 Mises应力 相对误差 Cantilever beam shell element solid element Mises stress relative error
  • 相关文献

参考文献3

二级参考文献15

  • 1詹梅,杨合,江志强.管材弯曲成形的国内外研究现状及发展趋势[J].机械科学与技术,2004,23(12):1509-1514. 被引量:35
  • 2鄂大辛.管无芯弯曲中塑性变形规律的研究[J].塑性工程学报,2006,13(1):5-7. 被引量:13
  • 3王勖成.有限元法基本原理及数值方法[M].北京:清华大学出版社,2001,4..
  • 4成建民.有限元法及其在车辆强度计算中的应用[M].北京:中国铁道出版社,1992..
  • 5蒋维诚.ANSYS/LS-DYNA3D算法基础和使用方法[M].北京:北京理工大学机电工程系,1996..
  • 6黄克智.ABQUS/Standard有限元入门指南[M].北京:清大学出版社,1998..
  • 7嘉木工作室.ANSYS5.7室例分析教程[M].北京机构林业出版社,2002..
  • 8E Da-xin,LIU Ya fei,FENG Huai-bei. Deformation Analysis for the Rotary Draw Bending Process of Circu lar Tubes [J]. Steel research international, 2010, 81 (12) : 1084-1088.
  • 9E Da-xin, CHEN Ming-feng. Numerical Solution of Thin-walled Tube Beding Spingback with Exponential Hard-ening Law[J]. Steel Research Int, 2010,81 (3): 286-291.
  • 10NOVAK M, RIEG F, DOLSAK B, et al. Intelligent Support to Finite Element type Selection[J].WSEAS Transactions on Information Science and Applications, 2006,3(9) :1617-1624.

共引文献48

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部