摘要
针对电能质量识别领域中,采用随机参数的支持向量机(SVM)分类器识别随机暂态扰动信号准确率低、优化耗时长等问题,提出一种基于遗传算法(GA)优化SVM识别电能质量暂态扰动(PQD)的新方法(GASVM)。首先,仿真生成具有随机噪声水平和扰动参数的9种PQD信号;接着,通过S变换,提取出6种信号特征构成输入特征向量,用于训练SVM分类器;再采用GA对SVM进行参数寻优,进而获得优化的GA-SVM分类器;最后,采用GA-SVM识别PQD信号。仿真对比试验表明,新方法能准确识别不同噪声环境下的9种PQD信号,分类准确率及优化所需时间均优于PSO优化SVM方法(PSO-SVM)。
SVM classifier has low accuracy and long time consuming for identifying random disturbance signals in the field of power quality recognition.A new method of transient power quality identification is proposed based on the SVM optimized by genetic algorithm.Firstly,9type of PQD signals with random noise level and perturbation parameters are generated by simulation.Then,6type of signal features extracted through the S transform are constituted as the input vectors,which are used to train the SVM classifier.Furthermore,GA is applied to optimize the parameters of SVM and the optimized GA-SVM classifier is obtained.Finally,GA-SVM model is applied to identify PQD signals.The simulation experiments show that the new method is able to accurately identify 9type of PQD signals in different noise environments.The classification accuracy and the optimization time are better than that of the PSO-SVM method.
出处
《水电能源科学》
北大核心
2016年第11期200-203,共4页
Water Resources and Power
基金
国家自然科学基金项目(51307020)
2016年吉林省科技发展计划项目(20160411003XH)
吉林省社科基金项目(2015A2)
吉林省教育厅"十三五"科技项目(吉教科合字[2016]第90号)
关键词
电能质量
随机噪声
S变换
GA
SVM
参数优化
扰动识别
power quality
random noise
S transform
genetic algorithm
support vector machine
parameter optimization
disturbance identification