期刊文献+

微分多项式分担值的唯一性

Share values of differential polynomials
下载PDF
导出
摘要 研究亚纯函数微分多项式分担值的唯一性问题。假设a,b,是非零常数正整数n,k满足n≥6k+21,若f^n+af^(k)与g^n+ag^(k)分担bIM并且f^n+af^k的b值点不是f,g的零点,则f,g恒等或者满足一定关系。 This paper investigated the uniqueness problem of differential polynomials of meromorphic func-tions.Let a,b be non-zero constants and let n,k be positive integers satisfying n≥6k+2 1 .If fn+af(k) and gn+ag(k) share b IM andthe b-points of fn+af(k)arenot the zeros of f and f,thenand are either equal or closely related.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2016年第4期307-311,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11126036j11201014)
关键词 亚纯函数 微分多项式 分担值 meromorphic function differential polynomial share value
  • 相关文献

参考文献2

二级参考文献18

  • 1仪洪勋.亚纯函数的重值与唯一性[J].数学年刊(A辑),1989,10(4):421-427. 被引量:3
  • 2LAINE I.Nevanlinna Theory and Complex DifferentialEquations[M].Berlin-New York Walter de Gruyter,1993.
  • 3YANG C C,YU H X.Uniqueness Theory of Mero-morphic Functions[M].Dordrecht:Kluwer,2003.
  • 4LI P,YANG C.On the Nonexistence of Entire Solu-tions of Certain Type of Nonlinear Differential Equa-tions[J].J Math Anal Appl,2006,302:827-835.
  • 5LI P.Entire Solutions of Certain Type of DifferentialEquations II[J].J Math Anal Appl,2011,375:310-319.
  • 6HALBURD R G,KORHONEN R J.Difference Ana-logue of the Lemma on the Logarithmic Derivative withApplication to Difference Equations[J].J Math AnalAppl,2006,314:477-487.
  • 7CHIANG Y M,Feng S J.On theNevanlinna Character-istic f(z+η)and Difference Equations in the ComplexPlane[J].The Ramanujan J,2008,16:105-129.
  • 8LAINE I,YANG C C.Clunie Theorems for Differenceand q-difference Polynomials[J].J Lond Math Soc,2007,76(2):556-566.
  • 9YANG C C,LAINE I.On Analogies Between Nonlin-ear Difference and Differentail Equations[J].Proc Ja-pan Acad Ser A,2010,86:10-14.
  • 10LIU K,YANG L Z,LIU X L.Existence of Entire Solu-tions of Nonlinear Difference Equations[J].Czechoslo-vak Mathematical Journal,2011,61(2):575-576.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部