期刊文献+

丛枝菌根共生建成的信号识别机制 被引量:3

Signal recognition mechanism in establishing arbuscular mycorrhiza symbiosis
原文传递
导出
摘要 丛枝菌根(Arbuscular mycorrhiza,AM)共生是自然界中普遍存在的一种互惠共生现象,对促进土壤生态系统物质循环及维持生态系统稳定具有重要的意义。AM共生体的建立需要AM真菌和宿主植物间一系列复杂的信号识别、交换和传导。本文总结近年来相关文献,从AM共生体形成前期及AM共生体形成期两个阶段,分别综述了信号物质的生物合成过程、调控过程及其作用机制,希望有助于进一步认识AM共生体建成过程,同时通过分析当前研究工作的不足及未来研究动向,期望推动相关研究工作。 Arbuscular mycorrhiza (AM) symbiosis is one of the best known beneficial plant-microorganism associations widely distributed on earth. AM symbiosis plays a vital role in the material cycle of soil ecosystem and also in maintaining the stability of ecosystem. AM symbiosis establishment implies a signal recognition, exchange and transduction between both partners that leads to mutual recognition and development of symbiotic structures. This paper reviews the recent research progresses in signal recognition, exchange and transduction mechanism in the pre-establishment and establishment stages in AM symbiosis, aiming to clarify the signal recognition mechanism in the establishment of AM symbiosis. Furthermore, the review addresses the weaknesses in the current researches and also proposes future research needs.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第12期2693-2699,共7页 Microbiology China
基金 中国科学院战略性先导科技专项(No.XDB15030102) 国家自然科学基金项目(No.41371264)~~
关键词 丛枝菌根真菌 独角金内酯 真菌因子 信号识别 Arbuscular mycorrhiza fungi, Strigolactones, MyC factor, Signal recognition
  • 相关文献

参考文献2

二级参考文献105

  • 1Aguilar-Martfnez, J,A., Poza-Carri6n, C., and Cubas, R (2007). Arabidopsis BRANCHEDI acts as an integrator of branching sig- nals within axillary buds. Plant Cell. 19, 458-472.
  • 2Agusti, J., Herold, S., Schwarz, M., Sanchez, R, Ljung, K., Dun, E. A., Brewer, RB., Beveridge, C. A., Sieberer, T., Sehr, E.M., et al. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. U S A. 108, 20242-20247.
  • 3Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquit- erpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435, 824-827.
  • 4Akiyama, K., Ogasawara, S., Ito, S., and Hayashi, H. (2010). Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104-1117.
  • 5Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, R, and AI-Babili, S. (2012). The path from carotene to carlactone, a strigolac- tone-like plant hormone. Science. 335, 1348-1351.
  • 6Arite, 1"., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., and Kyozuka, J. (2007). DWARFIO, an RMSI/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029.
  • 7Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S., and Kyozuka, J. (2009). d14, a strigolactone- insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416-1424.
  • 8Balla, J., Kalousek, P., Reinehl, V., Friml, J., and Prochzka, S. (2011). Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571-577.
  • 9Bates, T.R., and Lynch, J.R (2000). Plant growth and phospho- rus accumulation of wild type and two root hair mutants of Arabidopsb thaliana (Brassicaceae). Am. J. Bot. 87, 958-963.
  • 10Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553-563.

共引文献35

同被引文献53

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部