期刊文献+

核糖体工程技术选育ε-聚赖氨酸高产菌株 被引量:19

Screening of high-yield ε-poly-L-lysine producing strains through ribosome engineering
原文传递
导出
摘要 【目的】利用核糖体工程技术选育Streptomyces albulus AS3-14的链霉素和利福平双重抗性突变株,以提高其ε-聚赖氨酸合成能力。【方法】通过链霉素抗性筛选,获得链霉素抗性的ε-聚赖氨酸产量提高突变株;在此基础上,继续筛选其利福平抗性突变株,实现链霉素和利福平双重抗性ε-聚赖氨酸高产菌选育。【结果】获得的双重抗性高产突变株Streptomyces albulus WG-608的ε-聚赖氨酸摇瓶产量达到3.7 g/L,5 L发酵罐补料分批发酵ε-聚赖氨酸产量达到53.0 g/L,较出发菌株分别提高了42.3%和32.5%。【结论】链霉素和利福平双重抗性选育能够显著提高ε-聚赖氨酸产生菌Streptomyces albulus的产物合成能力。 [Objective] We used ribosme engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosme, to improve the capacity to produce ε-PL by Streptomyces albulus AS3-14. [Methods] A single drug-resistant mutant was obtained from the original S. albulus AS3-14 with the presence of mutagen of streptomycin. A double drug-resistant mutant S. albulus WG-608 was obtained on the basis of single drug-resistant mutant with the presence of mutagen of rifampicin, of which the ε-PL productivity was improved. [Results] The highest ε-PL-producing strain, named S. albulus WG-608, could produce ε-PL of 3.7 g/L in shake-flask and 53.0 g/L in a 5-L fermentor, 42.3% and 32.5%, respectively higher than that of the parent strain. [Conclusion] Screening of streptomycin and rifampicin resistant strains might be a promising alternative to obtain a high ε-PL-producing S. albulus strain.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第12期2744-2751,共8页 Microbiology China
基金 中央高校基本科研业务费专项资金项目(No.JUSRP51504)~~
关键词 Ε-聚赖氨酸 核糖体工程 抗生素抗性 酶活力分析 补料分批发酵 ε-Poly-L-lysine, Ribosome engineering, Drug resistance, Enzyme activities analysis, Fed-batch fermentation
  • 相关文献

参考文献5

二级参考文献41

  • 1齐秀兰,万秀玉,张秋霞,李福德.L-赖氨酸高产菌株筛选[J].沈阳药学院学报,1994,11(3):195-200. 被引量:7
  • 2朱宏阳,陈玮玮,徐虹,代书玲.产ε-聚赖氨酸菌株生物合成条件研究[J].生物加工过程,2005,3(2):15-18. 被引量:8
  • 3朱宏阳,徐虹,吴群,陈玮玮.ε-聚赖氨酸生产菌株的筛选和鉴定[J].微生物学通报,2005,32(5):127-130. 被引量:25
  • 4[1]Shima S,Sakai H.Polylysine produced by Streptomyces[J].Agric Biol Chem,1977,41(9):1907-1909.
  • 5[2]Hiraki J.Basic and applied studies on ε-poly-L-lysine[J].Antibact Antifungal Agents,1995,23:349-354.
  • 6[3]Hiraki J.ε-Polylysine,its development and utilization[J].Fine Chem,2000,29:18-25.
  • 7[4]Hiraki J.Use of ADME studies to confirm the safety of ε-Polylysine as a preservative in food[J].Regul Tox Pharmacol,2003,37:328-340.
  • 8[5]Prihardi K.Enhancement of ε-Polylysine production by Streptomyces albulus strain 410 using pH control[J].Journal of Bioscience and Bioengineering,2001,91:190-194.
  • 9[7]Hiraki J,Hatakeyama M,Morita H.Improvedε-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulu[J].Seibutsu Kogaku Kaishi,1998,76:487-493.
  • 10[9]Itzhaki F R.Colorimetric method for estimating polylysine and polyarginine[J].Agric Bio Chem,1972,50:569-574.

共引文献47

同被引文献135

引证文献19

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部