摘要
我国北方地区电力过剩、热力紧缺、电网弃风率高等问题凸显,为提高运行经济性,提出一种结合热电联产机组与风电机组联合运行滚动优化调度方法。针对风电等可再生能源出力存在较强波动性的现象,提出滚动修正的策略,并与单次预测结果进行了对比。同时,给出了优化调度的模型,利用智能单粒子算法将不同类型机组化作不同子矢量进行优化,较传统粒子群算法寻优能力更强。引入分布式电力驱动热泵用于改善热、电负荷布局,能够有效改善可再生能源弃电问题。所提出模型和策略在IEEE30节点系统算例中得到验证。
To improve the running efficiency and reduce the phenomenon of abandoning wind turbine output in north China, a rolling optimal dispatch for co-generation and wind turbine units is proposed. Due to the strong volatility of renewable energy like wind, rolling strategy is put forward and compared with single forecast results. Meanwhile, intelligent single particle optimizer(ISPO) algorithm, which divides a particle into sub-vectors in accordance to with unit type, is used in optimal dispatch model. Its ability of searching optimal state is stronger than traditional particle swarm optimization(PSO) algorithm. Distributed power driven heat pump is used to improve heat and electricity load structure and reduce the desert wind rate. The effectiveness and validity of model and strategy proposed are verified by the IEEE30 bus system case.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2016年第24期110-116,共7页
Power System Protection and Control
关键词
热电联产
滚动优化调度
智能单粒子算法
弃风率
分布式电力驱动热泵
combined heat and power generation
rolling optimal dispatch
intelligent single particle optimizer
desert wind rate
distributed power driven heat pump