期刊文献+

Performance Analysis of 112Gb/s×4-Channel WDM PDM-DQPSK Optical Label Switching System With Spectral Amplitude Code Labels

Performance Analysis of 112Gb/s×4-Channel WDM PDM-DQPSK Optical Label Switching System With Spectral Amplitude Code Labels
原文传递
导出
摘要 We present the performance analysis of ll2Gb/s-4 wavelength division multiplexing (WDM) 100GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10 9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10-3 using forward error correction (FEC). We present the performance analysis of ll2Gb/s-4 wavelength division multiplexing (WDM) 100GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10 9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10-3 using forward error correction (FEC).
出处 《Photonic Sensors》 SCIE EI CAS CSCD 2017年第1期88-96,共9页 光子传感器(英文版)
关键词 Optical label switching (OLS) polarization division multiplexed (PDM) spectral amplitude code(SAC) wavelength division multiplexing (WDM) Optical label switching (OLS) polarization division multiplexed (PDM) spectral amplitude code(SAC) wavelength division multiplexing (WDM)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部