期刊文献+

基于AdaBoost和Camshift的人脸检测与跟踪 被引量:5

Face Detection,Tracking Based on AdaBoost and Camshift
下载PDF
导出
摘要 为提高视频序列中人脸跟踪的准确性,提出了一种使用Camshift算法,结合人脸检测实现实时、自动的人脸跟踪方法。利用图像的Haar特征,结合Ada Boost算法训练得到人脸分类器,进行人脸的检测来初始化人脸跟踪窗口;利用Camshift算法对人脸进行跟踪,并在跟踪过程中引入距离约束条件,使跟踪的结果更加稳定。实验结果表明,该方法能够对视频帧中出现的人脸实现自动跟踪,有效地改善了传统Camshift跟踪方法中窗口发散、跟踪丢失的问题。 This paper proposes a method based on Camshiftand face detection, to achieve a real - time, automatic tracking system for human face. The algorithm uses the Haar feature and AdaBoost to train a classification for face detection which used to initialize the tracking window. Face tracking will be done based on Camshift algorithm, and distance constrains is also used to make sure the tracking result is stable. Experiments show that the method in the paper is more effective than traditional facetracking ways based on Camshift.
作者 汤泉
出处 《电子科技》 2016年第12期166-169,共4页 Electronic Science and Technology
关键词 人脸检测 人脸跟踪 CAMSHIFT ADABOOST算法 face detection face tracking Camshift AdaBoost
  • 相关文献

参考文献6

二级参考文献111

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2李大湘,彭进业,邓楠.基于多模型及SVM的单人脸跟踪系统[J].微计算机应用,2006,27(2):181-184. 被引量:3
  • 3朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 4张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 5Cristinacce D, Cootes T. Feature detection and tracking with constrained local models. In: Proceedings of the British Machine Vision Conference. Edinburgh, UK: BMVA, 2006. 929-938.
  • 6Comaniciu D, Ramesh V, Meer P. Kernel-bassed object tracking. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2003, 25(5): 564-577.
  • 7Nguyen H, Smeulders A. Robust tracking using foreground- background texture discrimination. International Journal of Computer Vision, 2006, 69(3): 277-293.
  • 8Maggio E, Cavallaro A. Accurate appearance-based Bayesian tracking for maneuvering targets. Compllter Vi- sion and Image Understanding, 2009, 113(4): 544-555.
  • 9Husain M, Saber E, Misic V, 3oralemon S P. Dynamic object tracking by partial shape matching for video surveillance ap- plications. In: Proceedings of tile IEEE International Con- ference on Image Processing. Atlanta, USA: IEEE, 2006. 2405-2408.
  • 10Jepson A, Fleet D, E1-Maraghi T. Robust online appear- ance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine. Inelligence, 2003, 25(10): 1296-1311.

共引文献625

同被引文献45

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部