摘要
在机器人姿态控制的优化中,二轮自平衡机器人是强非线性的非稳系统,受到扰动后需要有效的姿态矫正算法使其在短时间内、小超调量地恢复平衡,使机器人在受扰动工况下稳定运行。为获得理想的控制器,首先分析机器人平台,对机构简化并进行动力学分析获得状态方程,利用Maple设计整定控制器并在MapleSim中进行动力学仿真,验证PID及LQR算法的控制效果。实际机器人平台中采用PID控制策略,辅助以电流环及速度环控制,得到角度姿态随时间变化的曲线。在实际实验中能够获得与仿真相似的运动曲线,并对二轮自平衡机器人实现稳定控制。仿真结果表明,PID及LQR算法能够很好满足平衡机器人需求,且有一定抗干扰能力,为机器人控制系统优化提供了科学依据。
Two wheels self - balancing robot is a strong nonlinear unstable system. Thus, after disturbances, there is an urgent need for an effective posture correction algorithm to help it restore balance and operate stably under any conditions in a short time with small overshoot. Firstly, we analyzed robotic platform, obtained the transfer function and its state equation after dynamic analysis of simplified mechanism. Secondly, we designed a tuning controller using Maple and simulated it under MapleSim, which verified the effectiveness of PID and LQR control algorithm. A PID control strategy was adopted in actual robot platforms assisted with current and speed loop control. At last, we obtained the curve of posture angle changing with operating time. After realizing stable control of two wheels self - balancing robot, we also obtained the similar motion curve. The experimental results show that the PID and LQR algorithm have a certain anti - interference ability and can meet the needs of balancing robot.
出处
《计算机仿真》
CSCD
北大核心
2016年第12期323-328,共6页
Computer Simulation
关键词
直立控制
自平衡
线性控制
仿真
Vertical control
Self - balancing
Linear control
Simulation