期刊文献+

随机存贮模型中两个函数的重要性质

Important Properties of Two Functions in a Stochastic Inventory Model
下载PDF
导出
摘要 文献[1]给出了随机存贮系统中每单位时间的平均缺货量函数F_1(x,y)和平均未偿还的延迟交货额函数F_2(x,y)的表达式,即 F_1(x,y)=ρ[f_1(x)-f_1(x+y)]/y;F_2(x,y)=[f_2(x)-f_2(x+y)]/y,(1)其中,f_1(u)=integral from n=u to ∞([1-Φ_D(ξ)]dξ);ρ为系统的平均需求速率,且为大于0的常数;f_2(u)=integral from n=u to ∞((ξ-u)[1-Φ_D(ξ)]dξ)。 Based on the formulas given by Hapley G, this paper proves both the monotonicity and joint convexity with respect to x and y of two commonly used inventory level measuring functions F1(x,y) and F2(x,y), the average out-of-stock per unit time and the average outstanding back order respectively in the stochastic inventory model and their extremum properties are derived. With ΦD(ξ) =[(ξ-μ)/τ] and by replacing x with an equivalent control variable or the safety stock z = x-μ, this paper deduces F2(y,z,τ), another form of the function F2(x,y) and proves its monotonicity and joint convexity. It is also pointed out that when (t)>0 for any t, function F2(y,z,τ) is a strictly convex function with respect to each pair of control variables. However, as a whole, the function is only convex and not strictly convex.
作者 罗荣桂
机构地区 武汉工业大学
出处 《华中理工大学学报》 CSCD 北大核心 1989年第4期149-152,共4页 Journal of Huazhong University of Science and Technology
关键词 随机存贮模型 凸函数 缺货 延交货 Leadtime demand Control variable Inventory level.
  • 相关文献

参考文献1

  • 1罗荣桂,武汉工业大学学报,1984年,6卷,4期,399页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部