期刊文献+

一类三维Jerk混沌系统的动力学分析 被引量:1

Dynamics Analysis of a 3D Jerk Chaotic System
原文传递
导出
摘要 针对一类三维Jerk混沌系统,运用数值理论分析该系统在不同参数条件下的周期1、周期2、混沌吸引子,以及Lyapunov指数谱和分叉等基本动力学行为。进而运用Poincare紧致化理论对系统的无穷远动力学进行分析,同时通过零倾线给出系统在无穷远点处的局部动力学行为。结果表明,该系统属于非Shilnikov型混沌系统,具有隐藏吸引子。 Basic dynamics such as period one attractor, period two attractor, chaotic attractor, Lyapunov exponent spectrum and bifurcation for a 3 D Jerk chaotic system are studied by using numerical methods. Also, by using the Poincare compactifi- cation of polynomial vector field, the dynamics near infinite singularities are obtained. Furthermore, the local phase portraits of the infinite singularities are obtained by using aclinic line. The simulation results demonstrate the system is a non - Shilnikov chaotic system and has a hidden attractor.
出处 《世界科技研究与发展》 CSCD 2016年第6期1212-1215,共4页 World Sci-Tech R&D
基金 国家自然科学基金(NSFC61473237) 陕西省自然科学基础研究计划(2016JM1024) 陕西省教育厅科研计划(15JK2181) 西京学院科研基金(XJ140116)资助
关键词 Jerk系统 隐藏吸引子 稳定性 混沌 无穷远分析 Jerk system hidden attractor stability chaos infinity analysis
  • 相关文献

参考文献1

二级参考文献16

  • 1Li Damei, Lu Jun-an, Wu Xiaoqun, et al.Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J].Journal of Mathematical Analysis and Applications, 2006,323 (2) : 844-853.
  • 2Liao Xiaoxin.On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[J].Sci China Ser E,2004, 34:1404-1419.
  • 3Leonov G, Bunin A, Koksch N.Attractor localization of the Lorenz system[J].ZAMM, 1987,67:649-656.
  • 4陈关荣,吕金虎.Lorenz系统族的动力学分析、控制和同步[M].北京:科学出版社,2003.
  • 5Wu Zhinan, Zhang Fuchen, Li Xiaowu.Localization of compact invariant sets of a 4D system and its application in chaos[J]. International Journal of Research and Reviews in Applied Sciences, 2012,12 ( 1 ) : 1-9.
  • 6Sun Yeong-Jeu.Solution bounds of generalized Lorenz chaotic systems[J].Chaos,Solitons and Fractals,2009,40:691-696.
  • 7Ghosh D,Chowdhury A R,Saha P.Bifurcation continuation, chaos and chaos control in nonlinear Bloch system[J].Communications in Nonlinear Science and Numerical Simulation,2008,13: 1461-1471.
  • 8Ucar A, Lonngren K E, Er-WeiBa.Synchronization of chaotic behavior in nonlinear Bloch equations[J].Physics Letters A, 2003,314:96-101.
  • 9Chuang Chun-Fu, Sun Yeong-Jeu, Wang Wen-June.Invariant set, solution bounds, and linear synchronization control for Bloch chaotic systems[J].Journal of the Franklin Institute, 2012,349 : 2770-2782.
  • 10杨洪亮,张付臣,舒永录,李云超.一个新三维类洛伦兹系统的最终有界集和正向不变集及其在同步中的应用[J].山东大学学报(理学版),2010,45(9):83-89. 被引量:8

共引文献2

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部