期刊文献+

改进的蚁群算法与网络QoS组播路由研究

Modified Ant-Colony Algorithm and Its Application in QoS Multicast Routing
下载PDF
导出
摘要 组播路由和网络服务质量(Qo S),是当前Internet研究的两个重要应用课题。Qo S组播路由是寻找满足特定Qo S约束的一棵最优组播树,是一个典型的NPC完全多目标优化问题。针对传统蚁群算法,首次引入"蚁王"概念,使其能对路径寻优过程进行存储、排序和指导,从而使群体搜索过程更加协调有序。蚁群信息素的变化则采用精英信息素矩阵更新策略,以加快算法的收敛速度。相关仿真实验证明,这种改进的算法在解决Qo S组播问题时,能够获得比基本蚁群算法明显优越的收敛性能。 Multicast routing and QoS(Quality of Service) are two important topics of present Internet research. QoS multicast routing, focused to select an optimized multicast routing tree with sufficient resources to meet the requirement of customers, is a typical NPC complete multi-objective optimization problem. The traditional ant-colony algorithm is modified with the introduction of a “queen”concept, thus to help in storage, sorting, and selecting of paths. Meanwhile, the elitist pheromone matrix is used as a strategy to update related pheromone, so as to speed up convergence of the algorithm. Simulation with Matlab indicates that, this new method could achieve much better performance than the basic ant-colony algorithm.
出处 《通信技术》 2016年第12期1642-1647,共6页 Communications Technology
基金 国家人事部高层次留学人员回国工作资助项目(No.200461)~~
关键词 蚁群算法 QOS组播路由 精英信息素 蚁王 ant-colony algorithm QoS multicast routing elitist pheromone queen
  • 相关文献

参考文献4

二级参考文献29

  • 1马立肖,赵占芳,王楠,刘晨光.一种基于蚁群系统的多约束QoS路由模型[J].微计算机信息,2007,23(3):133-135. 被引量:2
  • 2张琨,王珩,刘凤玉.一种基于模拟退火方法的多约束QoS组播路由算法[J].计算机科学,2005,32(5):41-45. 被引量:6
  • 3章春芳,陈崚,陈娟.求解频率分配问题的自适应的多种群蚁群算法.[J].小型微型计算机系统,2006,27(5):837-841. 被引量:11
  • 4Dorigo M, Maniezzo V, Colorni A.Ant system : Optimization by a colony of cooperating agents[J].IEEE Transactions on SMC, 1996, 26( 1 ) : 29-41.
  • 5Bullnheimer B,Hartl R F,Strauss C.A new rank based version of the ant system-A computational study[J].CEJOR, 1999,7:25-38.
  • 6Stutzle T.Parallelization strategies for ant colony optimization[C]// Eiben A E,Back T,Schoenauer M,et al.LNCS:Parallel Problem Solving from Nature-PPSN V.Berlin:Springer-Verlag,1998:722-731.
  • 7Stutzle T,Hoos H H.Max-min ant system[J].Journal of Future Generation Computer Systems,2000,16(9):889-914.
  • 8Talbi E G,Roux O,Fonlupt C,et al.Parallel ant colonies for combinatorial optimization problems[C]//Rolim J.LNCS:Parallel and Distributed Processing, 11 IPPS/SPDP'99 Workshops.Berlin : Springer, 1999: 239-247.
  • 9Chug Shu-chuan,Riddick J F,Pan Jeng-shyang.Ant colony system with communication strategies[J].Information Science,2004,167(124).
  • 10Gambardella L M,Taillard E,Agazzi G.MACS-VRPTW:A multiple ant colony system for vehicle routing problems with time windows, Technical Report Idsia IDSIA-06-99 LUGANO [R].Switzerland, 1999.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部