期刊文献+

基于芯片水冷和重力热管技术的数据中心冷却方法研究 被引量:11

Study on cooling technology of high heat flux data center using chip water cooling and gravity heat pipe
下载PDF
导出
摘要 构建了从服务器芯片到冷水环路,再从制冷剂环路到冷却塔环路的热量传递路径。使用压电泵驱动的芯片水冷系统将服务器散发的热量集中导出,再通过重力热管系统传递到室外,最终通过冷却塔散发到室外。整个传热过程没有空气参与,有效降低了传热热阻,提高了室外冷源温度,增加了全年自然冷却的利用能力。试验测试和理论分析结果表明,在没有制冷机和风机的情况下,该冷却系统应用于大型数据中心,全年平均能效比达到8~11。同时,由于该系统不需要气流组织,可以有效提高室内空间利用率,容纳更多的机柜,有利于减少数据中心占地面积,进一步降低建设和运行成本。 Constructs a heat transfer path from server chip to cold water loop and then from refrigerant loop to cooling tower loop. Heat is tranferred from server chip by a piezoelectric pump driven water loop, then into a gravity heat pipe loop which connects indoor servers and outdoor cooling tower and finally released into outdoor environment by cooling tower. There is no air in the entire heat transfer path, which effectively reduces thermal resistance, raises the output water temperature of cooling tower and increases free cooling potential. Test results and theoretical analysis show that the annual average energy efficiency ratio (EER) of a large data center using this cooling system without chillers and air-conditioners can be as high as 8 to 11. In addition, more indoor space can be utilized due to the non-air flow design, which allows more server racks arrangement, less building area demand and further decrease of initial investment and operation cost.
出处 《暖通空调》 北大核心 2016年第12期109-115,共7页 Heating Ventilating & Air Conditioning
关键词 数据中心 芯片冷却 重力热管 自然冷却 能效比 data center, chip cooling, gravity heat pipe, free cooling, energy efficiency ratio
  • 相关文献

参考文献2

二级参考文献13

  • 1Ravi Mahajan, Raj Nair, Vijay Wakharkar, et al. Emerging Directions for Packaging Technologies. Semiconductor Technology and Manufacturing, 2002, 6(2): 62-75.
  • 2B V Antohe, J L Lage, D C Price, et al. Numerical Characterization of Micro Heat Exchangers Using Experimentally Tested Porous Aluminum Layers. Int. J. Heat and Fluid Flow, 1996, 17(6): 594-603.
  • 3G Hetsroni, M Gurevich, R Rozenblit. Metal Foam Heat Sink for Transmission Window. Int. J. Heat and Mass Transfer, 2005 (48): 3793- 3803.
  • 4徐侃,刘明侯,刘东.多孔介质填充的小槽道散热器性能的研究,见;中国宇航学会第八届空间热物理会议论文集.南昌,2007.9:512-519.
  • 5H Y Zhang, K C Toh. Fluid Flow and Heat Transfer in Liquid Cooled Foam Heat Sinks for Electronic Packages. IEEE Transactions and Packaging Technologys, 2005, 28(2): 272-280.
  • 6Losey M W, Jackman J, Firebaugh S L, et al. Design and Fabrication of Microfluidic Devices for Multiphase Mixing and Reaction. J. Microelectromech, 2002, 11(6): 709-717.
  • 7Gaddis E S, Gnielski V. Pressure Drop in Horizontal Cross Flow Across Tube Bundles. Int. Chem. Eng., 1985, 25(1): 1 -15.
  • 8Sparrow E M, Grannis V B. Pressure Drop Characteristics of Heat Exchangers Consisting of Arrays of Diamond- Shaped Pin Fins. Int. J.Heat Mass Transfer, 1991, 34(3): 589-600.
  • 9Moores K A, Joshi Y K. Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array. J. Heat Transfer, 2003, 125:999-1006.
  • 10Moffat R J. Describing the Uncertainties in Experimental Results. Exp. Thermal Fluid Sci., 1988, 1:3-17.

共引文献6

同被引文献70

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部