期刊文献+

自然场景下的显著性检测优化方法 被引量:6

Saliency Detection Optimization Method in Natural Scene
原文传递
导出
摘要 为满足自然场景下显著性检测精度的要求,提出了一种显著性检测优化方法。该方法采用简单线性迭代聚类分割算法将图像分割为多个超像素区域,并提取颜色区域对比度特征。通过Harris角点检测算法定位目标的大致几何中心,以中心概率的形式表征目标空间分布特征,并进行目标位置自适应的特征融合。基于目标空间分布特征和图像灰度重心,实现抑制背景、增强目标的显著图优化;利用针对显著性值的空间平滑技术,可增加显著图的连续性。实验结果表明,该方法在几个公开的测试集中的测试具有较高的准确率、召回率和较低的平均绝对误差,可应用于复杂自然场景下的显著性检测。 A new saliency detection optimization method is proposed to satisfy the accuracy requirement of saliency detection in the natural scene. The method can divide an image into multiple superpixel areas using the simple linear iterative clustering algorithm, and extract the contrast feature of color regions. The general target geometric center is located 'by the Harris corner detection algorithm. The center probability is used to describe the target space distribution feature, and the adaptive feature fusion for the target location is carried out. Optimization of a saliency map with background suppression and target enhancement is realized based on target space distribution feature and image gray centroid. The continuity of the saliency map can be enhanced by the space smoothing technique for the saliency value. Experimental results show that the test with this method does not only have high precision rate and recall rate, but also has low mean absolute error in several testing sets, and the method can be applied to the saliency detection in complex natural scenes.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第12期187-194,共8页 Laser & Optoelectronics Progress
关键词 机器视觉 显著性检测 显著性优化 目标空间分布特征 machine vision saliency detection saliency optimization target space distribution feature
  • 相关文献

参考文献4

二级参考文献67

  • 1H Masuzawa, J Miura. Observation planning for efficient environment information summarization [ C ]. IEEE RSJ International ('onference on Intelligent Robots and Systems, 2009. 5794 5800.
  • 2S Ekvall, D Kragic. Receptive field cooccurrence histograms for object detection [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems. 2005. 84-89.
  • 3C Choi. H I Christensen. Cognitive vision for efficient scene processing and object categorization in highly cluttered environments [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems, 2009. 4267-4274.
  • 4K A Ehinger, S B Hidalgo, A Torralba, et al: Modelling search for people in 900 scenes: A combined source model of eye guidance[J]. Visual Cognition, 2009, 17(6-7): 945-978.
  • 5A Borji, D N Sihite, L hti. Quantitative analysis of human- model agreement in visual saliency modeling: A comparative study[J]. IEEE Transactions on Image Processing, 2013, 22 (1) : 55-69.
  • 6A Borji, L Itti. State-of-the-art in visual attention modeling[J] IEEE Transactions on Pattern Analysis and Machine Intelligence 2013, 35(1): 185-207.
  • 7D Walther. Color Opponencies for Bottom-up Attention[D] Pasadena: California Institute of Technology, 2006. 98-99.
  • 8王卫华,李志军,何艳,等.一种基于兴趣区提取的红外搜索系统目标实时检测算法[J].中国激光,2013,39(ii):1109001.
  • 9J Theeuwes. Feature-based attention: It is all bottom-up priming[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1628): 20130055.
  • 10S Goferman, M L Zelnik, A Tal. Context aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10) : 1915-1926.

共引文献49

同被引文献41

引证文献6

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部