摘要
亚稳态分子间复合物(metastable intermolecular composite,MIC)由于具有超高反应燃烧速率及能量释放速率、高体积能量密度、低扩散距离和绿色环保等优点,在微型含能器件、火箭推进剂和绿色火工药剂等军用领域展现了很好的应用潜力。其反应机制与传统的含能材料不同,且具有超高速反应的瞬时性及复杂性,对其反应机理仍然缺乏清晰的认识,这限制了其应用研究的进展。本文对近年来亚稳态分子间复合物的反应机理研究进行综述,重点讨论具有代表性的"金属-氧翻转机理"和"预点火-熔结机理"。对于MIC材料的反应机理研究,本文主要从实验研究、理论模型研究和数值模拟研究三个方面进行分析。改性MIC材料是对材料性能进行调控的重要手段,是目前及未来的重要发展趋势之一,在论文最后对其反应机理做了重点叙述。通过对当前研究现状的归纳与分析,给出了当前的重要研究成果以及研究中出现的问题,并对未来的研究发展趋势进行了展望。
Due to the superfast combustion velocity and energy releasing rate, high volume energy density, low diffusion distance and being environmental friendly, metastable intermolecular composites (MIC) show great and important potential in both military and civil systems, such as microenergetic device, rocket propellant, green pyrotechnics, etc. However, the reaction mechanism of metastable intermolecular composition is still poorly clear and understood. The ultra-fast transient nature, and the complexity of probing both the vapor-phase and condensed-state chemistries of MIC materials make the reaction mechanism being different from that of traditional energetic materials, which prevents its further development in application research. The present paper summarizes the overseas and domestic research status of reaction mechanism of MIC materials so far. "Metal-oxygen flip mechanism" and "pre-combustion sintering mechanism" are discussed in detail. According to research methods, experimental research, theoretical model research, and numerical simulation research are presented respectively. Modification of MIC materials is an important method for adjusting the performances of the materials, and is one of the developing trends. We discuss the reaction mechanism of the modified materials in the end of the paper. Based on the comprehensive analysis of the study status, the challenges and prospective tendencies of reactionmechanism of MIC are also given.
出处
《化学进展》
SCIE
CAS
CSCD
北大核心
2016年第11期1689-1704,共16页
Progress in Chemistry
基金
爆炸科学与技术国家重点实验室(北京理工大学)自主课题项目(No.YBKT16-06)资助~~
关键词
亚稳态分子间复合物
反应机理
金属-氧翻转
扩散
预点火-熔结
metastable intermolecular composite
reaction mechanism
metal-oxygen flip
oxygen [ 0 ]diffusion
pre-combustion sintering