期刊文献+

大规格钛锭连铸过程中熔炼速度对凝固界面的影响

Effects of Melting Speed on Solidification Interface in Continuous Casting Process of Large Scale Titanium Ingot
下载PDF
导出
摘要 通过建立电子束冷床熔炼大规格钛锭稳态连铸模型,考虑了温度场和流场的耦合行为,使用有限元方法定量地获得熔炼速度对大规格钛锭凝固过程中的熔池深度和固相率的影响规律。结果表明:在一定工艺条件下,流场耦合温度场后固相率将增加,熔池深度将降低;当熔炼速度降低时,固相率增加,熔池深度降低,同时钛锭液相区流速降低。 The model of continuous casting in steady state of electron beam cold hearth melting large scale titanium ingot was established. Considering coupling behavior of temperature and flow field, the effects of melting speed on the depth of molten pool and solid fraction during the solidification of large scale titanium ingot were obtained by using the finite element method. The results show that under certain technological conditions,when the fluid field is coupled with temperature field, the solid fraction increases and the depth of molten pool decreases; when the melting speed decreases, the solid fraction increases and the depth of molten pool and the flow rate of liquid phase decrease.
出处 《热加工工艺》 CSCD 北大核心 2016年第23期84-87,共4页 Hot Working Technology
基金 云南省应用基础研究重大项目(2013FC001) 国家国际科技合作专项项目(2014DFR70810)
关键词 大规格钛锭 熔炼速度 流动场 熔池深度 固相率 large scale titanium ingot melting speed flow field depth of molten pool solid fraction
  • 相关文献

参考文献3

二级参考文献41

  • 1付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展[J].稀有金属,2006,30(6):850-856. 被引量:181
  • 2[1]Harker H R.Experience with large scale electron beam cold hearth melting (EBCHM)[J].Vacuum,1990,41(7-9):2154.
  • 3[2]Blum M,Biebricher U,Reiter G,et al.Recent developments in EB refining furnaces for the production of superclean Niobium and tantalum[A].In Schulz S W ed.,Proceedings of ebeam2002[C].2002:2-1.
  • 4[3]Poulsen E,Chinnis W,Mede M.Status of titanium cold hearth melting[A].In:Gorynin I V,Ushkov S S ed.,Titanium'99 Science and Technology[C].Saint-Petersburg:Central Research Institute of Structural Materials (CRISM) "PROMETEY".1999:1541.
  • 5[4]Fedorov V,Lashuk N,Schekin-Krotov V,et al.Electron beam cold hearth melt of titanium and its alloys[A].In:Gorynin I V,Ushkov S S ed.,Titanium'99 Science and Technology[C].Saint-Petersburg:Central Research Institute of Structural Materials (CRISM) "PROMETEY".1999:1406.
  • 6[5]Paton B E,Trigub N P,Akhonin S V.Electron beam melting of titanium[A].In:Gorynin I V,Ushkov S S ed.,Titanium'99 Science and Technology[C],Saint-Petersburg:Central Research Institute of Structural Materials (CRISM) "PROMETEY",1999:1372.
  • 7[6]Entrekin C H,Harker H R.Casting of 16 MT titanium slabs in an electron beam furnace[A].Presented at Titanium Applications Conference[C].1994,October 2~5,San Diego,CA,USA.
  • 8[7]Dax F R,Pang Yuan.Lowering the cost of titanium alloys for combat vehicles[A].Proceedings of the 16th Annual ITA Applications Conference[C].Broomfield,Colorado:International Titanium Association.2000.
  • 9[8]Wood J R.Producing Ti-6Al-4V plate from single-melt EBCHM ingot[J].JOM,2002,(2):56.
  • 10[9]Ward M.Temperature sensing for cold-hearth melting process[A].In:Blenkinsop P A,Everns W J,Flower H M ed.,Titanium'95 Science and Technology[C].Cambridge:The Institute of Materials.1995:1478.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部