期刊文献+

船舶行业能耗管理云服务平台及数据挖掘应用

Shipbuilding Industry Energy Consumption Management Cloud Services Platform and Data Mining Application
下载PDF
导出
摘要 针对船舶行业能耗管理存在的诸多问题,本文提出了船舶行业能耗管理云服务平台及相关的数据挖掘应用。通过布置在底层能耗数据采集系统,完成整个船厂用能终端和高能耗设备能耗数据采集,传输到云端后,依据数据挖掘理论对能耗数据进行分析,检测能耗漏洞,发现潜在节能点。该平台通过在南方某造船厂运用发现,各用能端口能耗数据清晰,通过能耗数据分析合理规划高能耗设备运行时段,能耗数据下降趋势明显。 Considering the problems of energy management in shipbuilding industry, this paper puts forward a cloud service platform and related data mining applications. By arranging in the underlying energy data acquisition system, it completes the shipyard to terminals and high energy consumption equipment energy consumption data acquisition, transmission to the cloud, according to the data mining theory is used to analyze the data of energy consumption and energy consumption detection vulnerability to find potential in energy saving. The platform through the use of a shipyard in the South finds that the energy consumption data of each energy port is clear, through the analysis of energy consumption data reasonably plans the operation period of high energy consumption equipment, energy consumption data decreases significantly.
出处 《自动化技术与应用》 2016年第12期28-31,共4页 Techniques of Automation and Applications
关键词 造船能耗 节能减排 能耗采集 数据挖掘 shipbuilding energy consumption energy conservation and emission reduction energy consumption collection data mining
  • 相关文献

参考文献4

二级参考文献34

  • 1张宏科,苏伟.新网络体系基础研究——一体化网络与普适服务[J].电子学报,2007,35(4):593-598. 被引量:126
  • 2Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 3Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 4Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 5Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 6Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 7Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.
  • 8Deshpande A, Guestrin C, Hong W, Madden S. Exploiting correlated attributes in acquisitional query processing//Proceedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005: 143-154.
  • 9Chu D, Deshpand A, Hellerstein J M, Hong W. Approximate data collection in sensor networks using probabilistic models//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, 2006:48.
  • 10Zhu X, Zhang S, Zhang J, Zhang C. Cost-sensitive imputing missing values with ordering//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007:1922 -1923.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部