摘要
分析了遥感影像矢量化数据的特征,指出传统的深度搜索匹配方法用于无拓扑矢量化数据公共边提取存在的不足。针对此问题,提出了基于共线搜索匹配的公共边提取算法,提取无拓扑遥感影像矢量化数据中多边形要素的公共边和非公共边,然后使用经典的道格拉斯普克算法压缩,有效地消除了对要素分别压缩时产生的缝隙问题,验证了算法的可靠性。
Aimed at the fault of the traditional methods and combined with the characteristics of non - topology remote sensing image vector data, a new algorithm is proposed based on eollinear search matching, to extract common edge and non - common edge of poly- gon, recording the left and right side information of the public side in the process of extracting at the same time, thealgorithm of Doug- las - Peuckeris used to simplify data. Experimental results show that the algorithm proposed in this paper is accurate and efficient to extract common edge and non - common edge of non - topology remote sensing image vector data, and it can effectively eliminates crack when using the Douglas - Peucker algorithm to simplify data.
出处
《测绘与空间地理信息》
2016年第12期37-40,共4页
Geomatics & Spatial Information Technology
基金
国家自然科学基金项目(41271450
41471336)资助
关键词
矢量化数据
拓扑
公共边
非公共边
共线搜索
vector data
topology
common edge
non - common edge
eollinear search matching