期刊文献+

两类线性李代数的结构性质 被引量:1

The Structure Properties of Two Kinds of Linear Lie Algebras
原文传递
导出
摘要 对线性李代数g(n,M,F)和g*(n,M,C)的结构性质作了一定的研究,分别证明g(n,M,F)=g(n,M+M'/2,F)∩g(n,M-M'/2,F)和g*(n,M,C)=g*(n,+M'/2,C)∩g*(n,-M'/2,C). The structural properties of linear Lie algebras g(n,M,F) and g*(n,M,C) are studied. g(n,M,F) = g( n,M+M'/2,F)∩g(n,M-M'/2,F) and g*(n,M,C) = g*(n,M+M'/2,C)∩g*(n,M- M'/2,C) are proved respectively.
作者 常建
出处 《阴山学刊(自然科学版)》 2017年第1期5-7,共3页 Yinshan Academic Journal(Natural Science Edition)
基金 国家自然科学基金(11401326) 内蒙古自然科学基金(2015MS0125 2014BS0109) 内蒙古师范大学科研基金(2014ZRYB05)
关键词 李代数 线性李代数 方阵 同构 Lie algebra Linear Lie algebra Square matrix Isomorphism
  • 相关文献

参考文献4

二级参考文献16

  • 1游宏,高有.Computation of the Orders of Classical Groups Over Finite Commutative Rings[J].Chinese Science Bulletin,1994,39(14):1150-1154. 被引量:4
  • 2Gauger M. On the classi, ation of metabelian Lie algebras [J]. Trans Amer Math Soc, 1973,179:293- 329.
  • 3Benito M P. Lie algebras in which the lattice formed by the ideals is a chain [ J]. Comm Algebra, 1992,20( 1 ) :93 - 108.
  • 4Benito M P. Lie Algebras With a Small Number of Ideals [J]. linear algebra and its applications, 1992,177: 233- 249 .
  • 5Belitskii G, Lipyanski R, Sergeichuk V V. Problems of classifying associative or Lie algebras and triples of symmetric or skewsymmetric matrices are wild [J]. Linear Algebra Appl, 200,407:249- 262.
  • 6Fang C Y. Ad-nilpotent ideals and equivalence relations [ J]. Journal of Algebra, 2010,323:2016 - 2025.
  • 7Bartolone C, Di Bartolo A, Falcone. G Nilpotent Lie algebras with 2-dimensional commutatorideals [ J]. Linear Algebra and its Applications, 2011,434: 650 - 656.
  • 8Towers D A. Maximal subalgebras of Lie algebras containing Engel subalgebras, arXiv: 100d-5005v1 [R]. 28 Apr, 2010.
  • 9Towers D A, Supplements to maximal subalgebras of Lie algebras, 1007-4902v1 [ R]. 28Jul, 2010.
  • 10HUMPHREYS ] E. Introduction to Lie algebras and representation theory[M]. New York:Springer, 1972:1-6.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部