期刊文献+

基于速度障碍圆弧法的UAV自主避障规划研究 被引量:22

Automatic obstacle avoidance planning for UAV based on velocity obstacle arc method
下载PDF
导出
摘要 提高复杂环境下无人飞行器(unmanned aerial vehicle,UAV)自主避障能力成为亟待解决的关键问题。针对现有避障算法忽略"潜在危险"障碍的影响和对多障碍避碰复杂的问题,建立障碍物威胁分级模型,提出一种速度障碍圆弧法,该方法通过速度障碍圆弧参数量化了威胁障碍的影响。同时,给出了速度障碍圆弧参数的系统计算方法,考虑了复杂环境下UAV与威胁障碍之间不同相对位置和相对速度情况。基于速度障碍圆弧法给出相应的避碰算法。以路径规划为实例对避碰算法进行了仿真验证,仿真结果验证了算法的有效性和实用性。 Improving the capability of autonomous obstacle avoidance for unmanned aerial vehicle (UAV) in complex environment becomes the key problem to he solved urgently. Aiming at the problems that the existing algorithms of obstacle avoidance ignore "potential danger" obstaclest influence and avoid multi-obstacles compli- catedly, the threat classification model of obstacles is built and the velocity obstacle arc method is proposed, which quantifies the influence of threatening obstacles through velocity obstacle arc parameters. Meanwhile, the systematic calculation method of velocity obstacle arc parameters is given, and the differences of relative position and relative velocity between UAV and threatening obstacles are considered in complex environment. The method of collision avoidance based on the velocity obstacle arc method is given. Path planning is taken as an example to conduct simulation for the collision avoidance algorithm, and simulation results demonstrate the practicality and efficiency of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第1期168-176,共9页 Systems Engineering and Electronics
基金 航空科学基金(20135584010)资助课题
关键词 无人飞行器 自主避障 速度障碍圆弧法 威胁分级模型 unmanned aerial vehicles(UAV) autonomous obstacle avoidance velocity obstacle arc method threat classification model
  • 相关文献

参考文献5

二级参考文献56

  • 1张凤,谈大龙.动态未知环境下基于相对坐标系的移动机器人实时运动规划[J].机器人,2004,26(5):434-438. 被引量:10
  • 2Tang P, Zhang Q, Yang Y M. Studying on path planning and dynamic obstacle avoiding of soccer robot[C]//3rd World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE, 2000: 1244-1247.
  • 3Rude M. Collision avoidance by using space-time representations of motion processes[J]. Autonomous Robots, 1997, 4(1): 101-119.
  • 4Hsu D, Kindel R, Latombe J C, et al. Randomized kinodynamic motion planning with moving obstacles[J]. International Journal of Robotics Research, 2002, 21(3): 233-255.
  • 5Rimon E, Koditschek D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5): 501-518.
  • 6Masoud S A, Masoud A A. Constrained motion control using vector potential fields[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(3): 251-272.
  • 7Tsourveloudis N C, Valavanis K P, Hebert T. Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4): 490-497.
  • 8Fiorini P, Shiller Z. Motion planning in dynamic environments using the relative velocity paradigm[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1993: 560-565.
  • 9Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles[J]. International Journal of Robotics Research, 1998, 17(7): 760-772.
  • 10Shiller Z, Large F, Sekhavat S. Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories[C]//IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2001: 3716-3721.

共引文献42

同被引文献119

引证文献22

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部