期刊文献+

载体液滴经微细管成形过程动力学特性的实验与模拟 被引量:2

Experimental and Simulation Studies on Dynamic Formation of Sodium Alginate Drops in Miniature Tubes
下载PDF
导出
摘要 利用微细管成形及后续交联和致孔过程,可以制备尺寸可控的载体微珠或晶珠。该过程中,微滴的成形是控制粒径的关键步骤,其成形过程动力学特性的研究具有重要意义。以海藻酸钠载体液滴为对象,通过高速摄影方法,用不同内径(1.1,1.6,1.9,2.2 mm)的微细管,对微滴成形过程中的形貌特征和界面演变动力学进行了实验研究,考察了微细管内径对液滴成形、滴落下落速度、液滴直径分布、颈缩线长度等的影响规律;进而,用VOF(volume of fluid)法中PLIC(piecewise linear interface calculation)的几何重构方法追踪非牛顿流体液滴形成过程的气液交界面,对相应液滴成形过程进行了模拟。结果表明,海藻酸钠溶液滴落下落速度、平均直径及颈缩线长度随着微细管内径的增加而增大;对于浓度2%的海藻酸钠溶液,以内径2.2 mm的微细管为例,当管内流速为30 mm·s^(-1),实验所得液滴脱落时最大颈缩线长度约为9.24 mm,滴落脱落时的速度约为6.09 mm·s^(-1),液滴直径约为5.8 mm;较内径1.1 mm的微细管所得液滴的参数值分别高119.04%、129.81%、39.13%;相应模拟所得液滴颈缩线长度、脱落时的速度及直径与实验结果的最大相对误差分别为8.7%、2.1%、8.6%,与实验结果基本一致,说明该方法适于微细管内非牛顿流体如海藻酸钠溶液成滴过程的模拟。 Injection methods using micro or miniature tubes followed by crosslinking or pore-forming cryogenic steps are effective in the fabrication of microbeads or cryogel-beads with controllable bead size distribution. The droplet formation process is crucial to the final size of microbeads and it is important to investigate dynamic characteristics of the droplet formation process. In this work, high-speed imaging was employed to study dynamic behaviors of sodium alginate droplet formation using different miniature tubes with inner diameters of 1.1, 1.6, 1.9 and 2.2 mm, respectively. The effects of tube diameter on droplet formation, dripping speed, diameter distribution and micro-thread length were investigated. Geometric reconstruction based on piecewise linear interface construction (PLIC) of the volume of fluid (VOF) method was used to capture gas-liquid interface, and the droplet generation process was numerically simulated. The experimental results show that drip velocity, mean diameter and micro-thread length of the sodium alginate droplets increase with the increase of tube diameter. For 2% (w/w) sodium alginate solution under tube inner diameter of 2.2 mm at flow velocity of 30 mm·s^-1, the maximum micro-thread length is 9.24 mm, the dripping speed is 6.09 mm·s^-1 and the mean diameter of droplets is 5.8 ram. These values are 119.04%, 129.81% and 39.13% higher than those obtained with tube inner diameter of 1.1 mm, respectively. The simulation results show that compared with experimental results, the maximum relative errors of the micro-thread length, dripping velocity and mean diameter of the droplets are 8.7%, 2.1% and 8.6%, respectively, which indicates that the simulation method is effective for describing and simulating droplet formation processes of non-Newtonian fluids like sodium alginate solution with micro or miniature tubes.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2016年第6期1264-1273,共10页 Journal of Chemical Engineering of Chinese Universities
基金 浙江省自然科学基金(LY14B060005) 国家自然科学基金(21106132 21576240)
关键词 载体液滴 海藻酸钠微球 微细管 高速摄像 动力学 数值模拟 droplets sodium alginate microspheres miniature tube high-speed imaging dynamics numerical simulation
  • 相关文献

参考文献6

二级参考文献101

  • 1张蒙正,陈炜,杨伟东,李军.撞击式喷嘴凝胶推进剂雾化及表征[J].推进技术,2009,30(1):46-51. 被引量:24
  • 2姚朝晖,叶宏开,王学芳,沈孟育.空泡溃灭水锤的VOF计算方法[J].原子能科学技术,1995,29(1):20-26. 被引量:5
  • 3刘秀洞.膜乳化法制备壳聚糖/海藻酸微胶囊.第九届全国生物化工学术会议论文集[M].-,2000.475-477.
  • 4Young S W.Pesticide formulations and application systems[J].ASTM STP,1986,5(13):13-22.
  • 5German G,Bertola V.Formation of viscuplastic drops by capillary breakup[J].Phys.Fluids,2010,22(3):033101.
  • 6Zhang Xiaoguang,Osman A Basaran.An experimental study of dynamics of drop formation[J].Phys.Fluids,1995,7(6):1185-1203.
  • 7Brackbill J U,Kothe D B,Zemach C.A continuum method for modeling surface tension[J].J.Comput.Phys.,1992,100(2):335-355.
  • 8Hirt C W,Nichols B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].J.Comput.Phys.,1981,39(1):201-225.
  • 9Gueyffer D,Li J,Nadim A,Scardovelli R,Zaleski S.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J].J.Comput.Phys.,1999,152(2):423-456.
  • 10Cooper-White J J,Fagan J E,Tirtaatmadja V,Lester D R,Boger D V.Drop formation dynamics of constant low-viscosity,elastic fluids[J].Journal of Non-Neunonian Fluid Mechanics,2002,106(1):29-59.

共引文献183

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部