期刊文献+

群的融合自由积的广义拟Frattini子群

Generalized Near Frattini Subgroups of Amalgamated Free Products of Groups
下载PDF
导出
摘要 引入了一类与子群的正规性相关的广义拟Frattini子群:n拟Frattini子群.研究了任意多个子群的具有循环融合自由积的n拟Frattini子群,并证明了相应的定理.同时研究了n拟Frattini子群的n拟可裂性质,分别得到了下n拟Frattini子群和上n拟Frattini子群的n拟可裂性质. By investigating generalized near Frattini subgroups of a free product of any set of subgroups with cyclic amalgamated subgroup, similar theorems are proved. Also, n-near splitting properties of the n-near Frattini subgroup are obtained.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第12期42-46,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11371335 11471055)
关键词 上n拟Frattini子群 下n拟Frattini子群 群的融合自由积 n拟可裂性质 upper n-near Frattini subgroup lower n-near Frattini subgroup amalgamated free products of groups n-near splitting properties
  • 相关文献

参考文献5

二级参考文献40

  • 1张勤海,赵俊英.幂零群的若干等价条件[J].西南师范大学学报(自然科学版),2005,30(1):26-30. 被引量:19
  • 2樊恽,郭秀云,岑嘉评.关于子群的两种广义正规性的注记[J].数学年刊(A辑),2006,27(2):169-176. 被引量:32
  • 3Kappe L C, Kirtland J. Some Analogues of the Frattini Subgroup [J]. Algebra Colloq, 1997, 4(4). 419 --426.
  • 4Zhang Zhi-rang. The Intersection of Maximal Subgroups with Finite Index [J]. SEA Bull Math, 2006, (30) : 1007 -- 1008.
  • 5Riles J B. The Near Frattini Subgroups of Infinite Groups [J].J Algebra, 1969, 12:155 - 171.
  • 6Robinson D J S. A Course in the Theory of Groups [M]. 2nd ed. New York: Springer-Verlag, 1996.
  • 7Frattini G. Intorno Alia Generazione Dei Gruppi di Operazioni [J]. Real Aedemia dei Lincei, Rend Ser, 1885, 1(4) : 281 -- 285, 455 -- 457.
  • 8Azarian M. K., On the lower near Frattini subgroups of amalgamated free product of groups I [J]. Missouri J. Math. Sci., 1990, 2:105-114.
  • 9Tang C. Y., On the Frattini subgroups of generalized free products with cyclic amalgamations [J]. Canad. Math. Bull., 1972, 15:569-573.
  • 10Riles J. B., The near Frattini subgroups of infinite groups [J]. J. Algebra, 1969, 12:155- 171.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部