期刊文献+

基于改进的LBP算法的三维人脸识别 被引量:6

3D face recognition based on improved LBP algorithm
下载PDF
导出
摘要 三维人脸数据的获取会受到成本以及可访问性的影响。通过对深度相机(如Xtion pro live)获取人脸数据过程的研究可知,它能够很容易获得彩色和深度结合(RGB-D)图。针对RGB-D图,使用局部和整体混合识别,利用局部二值的平均信息熵模式(LBEP),快速提取RGB-D图的直方图信息和特征向量,根据不同区域在表情不同情况下的变化程度,对不同区域的识别效果赋予不同的权值,进行加权运算。实验结果表明,相比现有的二维和三维人脸识别算法,改进的LBEP算法识别率有明显的提升。 The extraction of 3D face images data was affected by costs and accessibility.According to the study of acquiring face data process by depth camera(Xtion pro live),RGB-D diagrams can be easily obtained.As for the RGB-D image,the local and global hybrid identification was used to extract the histogram information and feature vector based on the local binary average entropy pattern(LBEP).According to different changes in some regions,the rate of recognition was given different weights and then they were calculated.Experimental results show that compared with 2D face recognition and 3D face recognition algorithm,improved LBEP algorithm apparently increases the discrimination ratio.
出处 《计算机工程与设计》 北大核心 2016年第12期3366-3370,共5页 Computer Engineering and Design
基金 山西省自然科学基金项目(2015011045)
关键词 三维人脸 人脸识别 深度相机 局部二值的平均信息熵模式(LBEP) 加权运算 3D face face recognition Xtion pro live local binary average entropy pattern(LBEP) weighted operation
  • 相关文献

参考文献1

二级参考文献18

  • 1Abate A F, Nappi M, Riccio D, et al. 2D and 3D face recognition : a survey [ J ]. Pattern Recognition Letters, 2007, 28(14) :1885 - 1906.
  • 2Pan G, Han S, Wu Z H, et al. 3D face recognition using mapping depth images[ C ]//IEEE Computer Soci- ety Conference on Computer Vision and Pattern Recog- nition. San Diego, CA, USA, 2005 : 1 - 7.
  • 3A1-Osaimi F R, Bennamoun M, Mian A. Integration of local and global geometrical cues for 3D face recognition [J]. Pattern Recognition, 2008, 41(3) : 1030 - 1040.
  • 4Phillips P, Flynn P, Scruggs T, et al. Overview of the face recognition grand challenge [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, 2005: 947- 954.
  • 5Dorai C, Jain A K. COSMOS--a representation scheme for 3D free-form objects [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (10) : 1115 -1130.
  • 6Ojala T, Piefikainen M, Menp T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Transactions on Pattern Analy- sis and Machine Imelligence ,2002,24( 7 ) :971 -987.
  • 7Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210 -227.
  • 8Li H B, Huang D, Morvan J M, et al. Expression-ro- bust 3D face recognition via weighted sparse represen- tation of multi-scale and multi-component local normal patterns [ J]. Neurocomputing, 2014,133 : 179 - 193.
  • 9Mian A S, Bennamoun M, Owens R. An efficient mul- timodal 2D-3D hybrid approach to automatic face recog- nition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11 ): 1927- 1943.
  • 10Lei Y J, Bennamoun M, E1-SaUam A A. An efficient 3D face recognition approach based on the fusion of novel local low-level features [ J ]. Pattern Recogni- tion, 2013, 46( 1 ):24-37.

共引文献5

同被引文献59

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部