期刊文献+

结合规则划分和M-H算法的SAR图像分割 被引量:11

SAR Image Segmentation Combined Regular Tessellation and M-H Algorithm
原文传递
导出
摘要 提出了一种结合规则划分和M-H(Metropolis-Hastings)算法的SAR图像分割方法。首先,利用规则划分将图像域划分成子块,并假设每个子块内像素服从同一独立的Gamma分布;根据贝叶斯定理,构建基于子块的图像分割模型;然后,利用M-H算法模拟该分割模型,实现SAR图像分割及模型参数估计。在MH算法中,设计了改变参数矢量、改变标号场及分裂或合并子块三个移动操作。为了验证提出的分割方法,分别对真实及模拟SAR图像进行分割实验。定性及定量评价结果表明了本文方法的可行性及有效性。 This paper presents a SAR image segmentation method that combines regular tessellation and the Metropolis-Hastings(M-H)algorithm.First the image domain is partitioned into a group of rectangular sub-blocks by regular tessellation and then the image is modeled on the assumption that intensities of its pixels in each homogeneous region follow an identical and independent Gamma distribution.A region-based SAR image segmentation model is built using the Bayesian paradigm.Then,an M-H scheme is used to simulate the segmentation model,which can segment SAR image and estimate the model parameters.In the M-H algorithm,three move types are designated,including updating parameter vector,updating label field,and splitting or merging sub-block.The results obtained from both real and simulated SAR images show that the proposed algorithm works effectively and efficiently.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2016年第11期1491-1497,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41301479 41271435)~~
关键词 SAR图像分割 规则划分 Metropolis-Hastings算法 SAR image segmentation regular tessellation Metropolis-Hastings algorithm
  • 相关文献

参考文献3

二级参考文献24

  • 1李禹,计科锋,粟毅.合成孔径雷达图像分割技术综述[J].宇航学报,2008,29(2):407-412. 被引量:22
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图象图形学报(A辑),2005,10(4):484-488. 被引量:120
  • 4高贵,计科峰,匡纲要,李德仁.基于各向异性热扩散方程的SAR图像分割方法[J].信号处理,2006,22(1):105-109. 被引量:7
  • 5Comer M L, Delp E J. The EM/MPM Algorithm for Segmentation of Textured Images: Analysis and Further Experimental Results. The IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996
  • 6Zhang J, Modestino L J W D A. Maximum-like- lihood Parameter Estimation for Unsupervised Stochastic Model-based Image Segmentation. IEEE Trans. on Image Processing, 1994,3(4):404~420
  • 7Melas D, Wilson S. Double Markov Random Fields and Bayesian Image Segmentation. IEEE Trans. on Signal Processing, 2002. 357~365
  • 8Li S Z. Markov Random Field Modeling in Computer Vision. New York, Berlin, Heidelberg, Tokyo:Springer-Verlag,1995
  • 9Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Norwood:Artech House Inc, 1998
  • 10Pieczynski W. Statistical Image Segmentation. Machine Graphics and Vision, GKPO'92, Naleczow, Poland, 1992

共引文献21

同被引文献68

引证文献11

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部