期刊文献+

基于无网格方法的齿球型催化剂体相温度分布数值模拟 被引量:1

The numerical simulation about temperature distribution of teethspherical catalyst by meshless method
原文传递
导出
摘要 本文以真实齿球型加氢裂化催化剂三维体相环境为计算实体,以模拟工业运行温度的波动函数作为边界条件,采用无网恪数值方法求解傅立叶传热方程,并使用计算结果分析加氢裂化催化反应过程中外界温度波动对于催化剂内部温度分布的影响。计算结果表明:实际反应过程中催化剂内部并非等温反应,在加氢裂化反应过程中外界的反应温度波动以及催化剂内部的热点分布对于催化剂团簇内部的温度场分布有一定的影响作用。催化剂体相内部的平均温度也随着反应体系放热情况、催化剂粒径、原料油密度、反应空速以及催化剂内部热点分布情况的不同而有所变化。 Based on three-dimensional environment of real teeth-spherical hydrocracking catalyst, the method of meshfree calculation solving Fourier partial differential equation is provided which uses the function of simulating industrial operating temperature as the boundary condition of Fourier partial differential equation. The influence of external temperature fluctuation on the internal temperature distribution of the catalyst was analyzed using the calculated results. The analysis results show that the actual reactions in the catalyst is not isothermal reaction. At the same time, catalyst bulk temperature distribution is restricted to the fluctuation of reaction temperature hydrocracking reaction process outside and catalyst internal hotspot distribution. Catalyst bulk phase average temperature was influ- enced by heat of reaction, the catalyst particle size, material density, reaction space velocity and catalyst inner hotspot distribution.
出处 《计算机与应用化学》 CAS 2016年第12期1272-1278,共7页 Computers and Applied Chemistry
基金 中国石油化工股份有限公司总合课题JQ-011308
关键词 加氢裂化 传热 无网格 数值模拟 分布计算 hydrocracking thermal conductivity meshless numerical simulation distributed computing
  • 相关文献

参考文献6

二级参考文献101

  • 1叶剑云,王北星,张冰剑,陈清林.加氢精制装置热联合优化[J].石油石化节能与减排,2011,1(1):10-13. 被引量:12
  • 2张理齐,张定基.钢铁厂热成象技术的开发应用[J].钢铁,1995,30(9):70-73. 被引量:4
  • 3张德义.建设节约型炼油工业 进一步搞好节能降耗[J].炼油技术与工程,2006,36(1):1-6. 被引量:25
  • 4钱伯章.石化行业节能降耗的潜力与途径[J].资源节约与环保,2007,23(2):22-25. 被引量:15
  • 5服部晋 位田敏和 等.简易辐射温度计[J].日本赤外线学会志,1996,6(2):21-27.
  • 6Elbashir N O, Dutta P, Manivannan A, et al. Impact of Cobalt-based Catalyst Characteristics on the Performance of Conventional Gas-phase and Supercritical-phase Fischer-Tropsch Synthesis [J]. Appl. Catal. A: Gen., 2005, 285(1/2): 169-180.
  • 7Vergunst T, Kapteijn F, Moulijn J A. Monolithic Catalysts-- Non-uniform Active Phase Distribution by Impregnation [J]. Appl. Catal. A: Gen., 2001, 56(11): 3455-3468.
  • 8Wang J F, Carson J K, North M F, et al. A New Approach to Modeling the Effective Thermal Conductivity of Heterogeneous Materials [J]. Int. J. Heat Mass Transfer, 2006, 49(17/18): 3075-3083.
  • 9Bahrami M, Yovenovich M M, Culham J R. Effective Thermal Conductivity of Rough Spherical Packed Beds [J]. Int. J. Heat Mass Transfer, 2006, 49(19/20): 3691-3701.
  • 10Atabaki N, Baliga B R. Effective Thermal Conductivity of Water-saturated Sintered Powder-metal Plates [J]. Heat Mass Transfer, 2007, 44(1): 85-89.

共引文献60

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部