期刊文献+

基于自适应K值选择的K近邻算法研究 被引量:1

K Nearest Neighbor Algorithm Based on Adaptive K Value Selection
原文传递
导出
摘要 针对室内定位中基于位置指纹的K近邻法采用固态K值无法得到最优定位结果的问题,提出自适应K值选择的K近邻法。算法利用相邻定位点短时间间隔内空间位置变化引起的信号强度变化规律推测运动趋势,并与不同K值的定位结果构建的空间矢量进行匹配,从而自适应地从K近邻法的不同K值中选取最优的K值。同时依据室内AP的几何布局特征划分多个矢量域内,并对定位结果进行区域改正。试验结果表明,该算法能够很好地抑制较大误差的出现,提高定位的实时性、定位精度和稳定性。 The K nearest neighbor algorithm of location- based fingerprint with solid K value will not get the best result. Hence, a new K nearest neighbor algorithm through a daptive K value selection is proposed to resolve this issue. Algorithm uses the discipline that the change of signal strength during short intervals to speculate movement trend. And it matches with the space vector that constructed by the positioning results of different K. Thereby, the best K value can be adaptively chose from the different K values of K nea-rest neighbor algorithm. At the same time, based on the geometric layout features of indoor's AP , testing ground is divided into multiple vector filed, and correct positioning results by vector field. Experimental results show that the algorithm can suppress the occurrence of a large error, and iraprove real-time positioning, positioning accuracy and stability.
出处 《测绘地理信息》 2016年第6期25-29,共5页 Journal of Geomatics
基金 国家高技术研究发展计划(863计划)资助项目(2013AA12A201) 面向地理国情服务的资源开发地表沉降监测资助项目(201412016) 2014江苏省普通高校研究生科研创新计划资助项目(KYLX_1394) 江苏高校优势学科建设工程"测绘科学与技术学科"资助项目(SZBF2011-6-B35)~~
关键词 室内定位 K近邻算法 自适应K值选择 矢量域 空间关系 indoor positioning K nearest neighbor algo rithm adaptive K value selection vector filed spatial rela tionships
  • 相关文献

参考文献2

二级参考文献11

  • 1肖竹,黑永强,于全,易克初.脉冲超宽带定位技术综述[J].中国科学(F辑:信息科学),2009,39(10):1112-1124. 被引量:23
  • 2Prasithsangaree P,Krishnamurthy P,Chrysanthis P K.On indoor position location with wireless LANs[C]∥Proceedings of the 2002IEEE Personal,Indoor and Mobile Radio Communications,2002,2:720-724.
  • 3King T,Kopf S,Haenselmann T,et al.COMPASS:A probabilistic indoor positioning system based on 802.11and digital compasses[C]∥Proceedings of the 2006IEEE WiNTECH,LosAngeles,CA,USA,2006:34-40.
  • 4Morelli C,Nicoli M,Rampa V,et al.Particle filters for RSS-based localization in wireless sensor networks:An experimental study[C]∥Proceedings of the 2006IEEE ICASSP,Washington DC,USA,2006:957-960.
  • 5Lee C W,Lin T N,Fang S H,et al.A novel clustering-based approach of indoor location fingerprinting[C]∥Proceedings of the 20131EEE Personal Indoor and Mobile Radio Communications(PIMRC),2013:3191-3196.
  • 6Liu H,Gan Y,Yang J,et al.Push the limit of WiFi based localization for smartphones[C]∥Proceedings of the 18th annual international conference on Mobile computing and networking,2012:305-316.
  • 7Bahland P,Padmanabhan V N.RADAR:An in-building RF-based user Location and tracking system[C]∥Proceedings of the2000IEEE INFOCOM,Piscataway,NJ,USA,2000:775-784.
  • 8肖竹,于全,易克初,王勇超.适用于NLOS环境的UWB定位方案研究[J].通信学报,2008,29(4):1-7. 被引量:15
  • 9杨帆,赵东东.基于Android平台的WiFi定位[J].电子测量技术,2012,35(9):116-119. 被引量:50
  • 10陈永乐,朱红松,孙利民.一种抗多径和阴影的视距指纹定位算法[J].计算机研究与发展,2013,50(3):524-531. 被引量:6

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部