摘要
基于导数的微分在非交换几何、非交换规范理论和可积系统中都有十分重要的作用.本文从一类基于导数的微分出发给出了联络和曲率形式.利用这一理论,作者给出了连续、半离散和离散可积系统的统一零曲率表示.
Derivation-based differential calculus is of great importance in noncommutative geometry, noncommutative gauge theory and integrable systems. This paper gives the con- nection and curvature from a class of deformed derivation-based differential calculus. By means of this theory, the authors obtain the zero-curvature representation of the continuous, semi-discrete and discrete integrable systems in an unified manner.
作者
白永强
付会娟
裴明
BAI Yongqiang FU Huijuan PEI Ming(Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, Henan, China School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2016年第4期421-432,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10801045)
河南省科技厅项目(No.152300410062)的资助
关键词
零曲率
非交换微分
可积性
联络
Zero curvature, Noncommutative differential calculus, Integrability, Connection