期刊文献+

非交换微分及可积系统的统一零曲率表示

Noncommutative Differential Calculus and the Unified Zero Curvature Representation of Integrable Systems
下载PDF
导出
摘要 基于导数的微分在非交换几何、非交换规范理论和可积系统中都有十分重要的作用.本文从一类基于导数的微分出发给出了联络和曲率形式.利用这一理论,作者给出了连续、半离散和离散可积系统的统一零曲率表示. Derivation-based differential calculus is of great importance in noncommutative geometry, noncommutative gauge theory and integrable systems. This paper gives the con- nection and curvature from a class of deformed derivation-based differential calculus. By means of this theory, the authors obtain the zero-curvature representation of the continuous, semi-discrete and discrete integrable systems in an unified manner.
作者 白永强 付会娟 裴明 BAI Yongqiang FU Huijuan PEI Ming(Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, Henan, China School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2016年第4期421-432,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10801045) 河南省科技厅项目(No.152300410062)的资助
关键词 零曲率 非交换微分 可积性 联络 Zero curvature, Noncommutative differential calculus, Integrability, Connection
  • 相关文献

参考文献2

二级参考文献22

  • 1LUOXu-Dong,GUOHan-Ying,LIYu-Qi,WUKe.Difference Discrete Variational Principle in Discrete Mechanics and Symplectic Algorithm[J].Communications in Theoretical Physics,2004,42(3X):443-452. 被引量:5
  • 2Z. Liu, Y.Q. Bai, and K. Wu, Phys. Lett. A 314 (2003) 443.
  • 3Y.Q. Bai, Z. Liu, P. Ming, and Z.J. Zheng, Commun. Wheor. Phys. (Beijing, China) 40 (2003) 1.
  • 4A. Connes, Noncommutative Geometry, Academic Press Inc., San Diego (1994).
  • 5A. Connes and J. Lott, Nucl. Phys. B: Proc. Suppl. 18 (1990) 29.
  • 6A.H. Chamseddine and A. Connes, Phys. Rev. Lett. 77(24) (1996) 4868.
  • 7A. Connes, M. Douglas, and A. Schwartz, J. High Energy Phys. 02 (1998) 003.
  • 8A. Sitarz, J. Geom. Phys. 15 (1995) 123.
  • 9A. Dimakis and F. Muller-Hoissen, Lett. Math. Phys. 39 (1997) 69.
  • 10A. Dimakis and F. Muller-Hoissen, J. Phys. 48 (1998) 1319.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部