摘要
We reported the fabrication and doping effect of Ga-doped ZnO nanorods/electropolymerized polythio-phene(e-PT) hybrid photovoltaic(h-PV) devices. Ga-Doped ZnO nanorod array photoanode devices were fabricatedvia hydrothermally growing nanorods on sol-gel spin-coating ZnO seed layer, and then the nanorod array was im-mersed into a thiophene solution to yield a thin polythiophene film by electrochemically polymerization. Afterwards,a thin layer of A1 was deposited on the surface of polythiophene to make an electrode for photovoltaic measurement.The ZnO nanorods with different Ga-doping contents were characterized by means of X-ray diffraction(XRD), scan-ning electron micrograph(SEM) and X-ray photoelectron spectroscopy(XPS). Photovoltaic J-V characterization wasperformed on the e-PT/ZnO bilayer and bulk heterojunction(BHJ) devices. Though the unsubstituted polythiophene isnot an ideal polymer material for solar cells with high power conversion efficiency, it is a sound model for the studyon the effect of dopant in hybrid materials. The results indicate that doping Ga can substantially improve the powerconversion efficiency of the ZnO-polythiophene solar cell.