期刊文献+

小尺度参考辐射场中散射γ能谱的计量特征提取方法 被引量:2

Metrological Feature Extraction Method for Scattering γ Spectrum in Minitype Reference Radiation
下载PDF
导出
摘要 在小尺度参考辐射(MRR)场γ射线空气比释动能约定真值(CAK)的确定方法中,散射γ能谱由于受放射性统计涨落与测量时电子学噪声的干扰及存在的数据冗余问题而不能准确地表征MRR的特征信息,影响了CAK预测模型的构建效率与预测精度。本文采用了小波分析与主元分析(PCA)方法依次对散射γ能谱进行降噪处理和计量特征提取。所提取的计量特征用于替代原始能谱数据并构建了CAK的预测模型,其构建效率与预测精度均得到明显提高。 In the determination of the gamma air kerma conventional true value (CAK ) in a minitype reference radiation (MRR) ,the scattering γ spectrum is affected by the radioactive statistical fluctuation and other electronic noise .Moreover ,the excess data of the spectrum after dispersing also make it unable to characterize the MRR accurately and decrease the construction efficiency and prediction precision of the prediction model of CAK .The wavelet analysis and principal component analysis (PCA) were employed to de‐noise the scattering γ spectrum and extract the metrological feature components . When the metrological feature components were used to replace the spectrum for CAK prediction model construction ,the construction efficiency and prediction precision were improved significantly .
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第12期2256-2262,共7页 Atomic Energy Science and Technology
关键词 小波分析 主元分析 小尺度参考辐射 空气比释动能 wavelet analysis principal component analysis minitype reference radia-tion air kerma
  • 相关文献

参考文献4

二级参考文献20

  • 1朱习军,戴月明,郭守军.基于小波分解的GPS监测数据消噪处理[J].山东科技大学学报(自然科学版),2005,24(2):17-19. 被引量:5
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3许禄.化学计量学方法[M].北京:科学出版社,1997.101.
  • 4伯晓晨 李涛 等.Matlab工具箱应用指南[M].北京:电子工业出版社,2000..
  • 5Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69.
  • 6Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385.
  • 7Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition.
  • 8Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition.
  • 9Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300.
  • 10Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995.

共引文献180

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部