期刊文献+

利用SPR检测26肽与β_1-肾上腺素受体自身抗体的相互作用 被引量:2

Detection of the interaction between the peptide and β_1-adrenergic receptor autoantibodies using surface plasmon resonance
下载PDF
导出
摘要 目的探讨根据β_1肾上腺素受体细胞外第二环(β_1-adrenergic receptor,β_1-AR-EC_Ⅱ)的氨基酸序列合成的26肽与β_1-肾上腺素受体β_1-AR-EC_Ⅱ的单克隆抗体(β_1-adrenergic receptor autoantibodies,β_1-AA)的相互作用。方法根据人β_1-肾上腺素受体细胞外第二环(β_1-AR-EC_Ⅱ)的氨基酸序列合成26肽;采用杂交瘤细胞融合的方法获得针对β_1-AR-EC_Ⅱ的单克隆抗体(β_1-AA);利用表面等离子共振(surface plasmon resonance,SPR)检测该合成的26肽与β_1-AA的亲和力;利用乳鼠心肌细胞跳动频率实验验证该合成26肽对β_1-AA的中和作用。结果提取的β_1-AA可以使乳鼠心肌细胞跳动频率增加(P<0.05),提示该β_1-AA具有生物学活性;合成26肽与β_1-AA结合的亲和力(K_D)为4.44μmol/L,属于中等强度结合;较β_1-AA组相比,26肽处理后可明显降低心肌细胞跳动频率(P<0.05)。结论该合成26肽与β_1-肾上腺素受体自身抗体之间存在相互作用,并且可以拮抗β_1-AA引起的乳鼠心肌细胞跳动频率的增加。 Objective To investigate the interaction between the peptide which mimic the structure of the second extracellular loop of the β1-adrenergic receptor( β1-AR-ECⅡ) and β1-adrenergic receptor autoantibodies( β1-AA). Methods Peptide was synthesized according to the amino acid sequence of human β1-AR-ECⅡ; a hybridoma fusion method was used to obtain anti-β1-AR-ECⅡmonoclonal antibody; the interaction between the peptide and β1-AA was detected by surface plasmon resonance( SPR); and the beating frequency experiment of neonatal rat cardiomyocytes was explored to test the neutralization of the peptide to β1-AA. Results β1-AA enhanced the beating frequency of neonatal rat cardiomyocytes( P〈0. 05),indicating that the β1-AA we obtained has biological activity; SPR results showed that there was a moderate binding affinity( KD) of 4. 44 μmol/L between the synthetic peptide and β1-AA. Conclusion There was interaction between the synthesized peptide and β1-adrenergic receptor autoantibodies.
出处 《首都医科大学学报》 CAS 北大核心 2016年第6期736-739,共4页 Journal of Capital Medical University
基金 973计划前期研究专项(2014CB560704) 北京市自然科学基金重点项目(7151001)~~
关键词 β1-肾上腺素受体自身抗体 26肽 表面等离子共振 β1-adrenergic receptor autoantibodies(β1-AA) 26 peptide surface plasmon resonance
  • 相关文献

参考文献3

二级参考文献50

  • 1陈集双,吴林福,周雪平,李德葆.美人蕉黄瓜花叶病毒研究[J].浙江农业学报,1994,6(4):272-275. 被引量:10
  • 2[1]Ozbay E.Plasmonics:Merging photonics and electronics at mnoscale dimensions[J].Science,2006,311:189.
  • 3[2]WagnerFE,et al.Before striking gold in gold-ruby glass[J].Nature,2000,407,691.
  • 4[3]Ebbesen T W,Lezec H J,Ghaemi H F,Thio T,Wolff P A.Subwavelength tunneling of electromagnetic waves[J].Nature (London),1998,391:667.
  • 5[4]Michaels A M,et al.Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Agnanocrystals[J].J.Amer.Chem.Soc.,1999,121:9932.
  • 6[5]Wang S S,Kerker M.Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids[J].Phys.Rev.B,1981,24:1777.
  • 7[6]Eohren C F,Huffman D F.Absorption and Scattering of Light by Small Particles[M].New York,:Wiley,1983.
  • 8[7]Luis M.Liz-Marzan.Nanometals formation and color[J].Materials today,2004,(2):26.
  • 9[8]Link S,El-seyed M A.Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J].J.Phys.Chem.B,1999,103:8410.
  • 10[9]Salamon Z,Macleod H A,Tollin G.Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems.I:Theoretical principles[J].Biochim.Biophys.Acta,1997,1331:117-129.

共引文献12

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部