期刊文献+

传感器网络中基于压缩感知的压缩域目标跟踪算法研究与应用 被引量:13

Research and application of target tracking algorithm based on compressed domain in wireless sensor network
下载PDF
导出
摘要 复杂环境下传感器网络目标跟踪,存在跟踪准确性与算法复杂性这对矛盾,需要考虑准确性、通信和计算能耗之间的折中。针对此问题,研究传感器网络中基于压缩感知的压缩域目标跟踪和压缩域数据融合,并提出了用稀疏的测量矩阵对haarlike特征压缩,压缩域特征送入朴素贝叶斯分类器,在压缩域直接实现目标跟踪的算法。然后通过配置传感器网络以生成多个层次类型不同的簇结构,压缩后的数据在网络中传输,并在各层簇头实现压缩域下的数据融合。该算法通过稀疏测量矩阵压缩表征原始图像信息和分类器的自我学习更新,提高了对压缩域目标特征分类的准确性,在复杂环境下有更好的鲁棒性。而压缩域直接进行目标跟踪,不需要重构图像,也减少了网络运算量和数据传输量。通过仿真实验和标准数据库测试对比以及在机器人足球赛实验平台中的应用表明,该算法在跟踪准确性,数据传输量及传输能耗上均有优势。 Target tracking of sensor networks in complex environment has contradictions between the tracking accuracy and the complexity of the tracking algorithm. The tradeoff between accuracy and energy consumption of communication and calculation should be considered. To solve this problem,the compressed-domain target tracking and compressed-domain data fusion based on compressive sensing are studied,and a target tracking algorithm performed in compressed domain is proposed. The Haarlike features of original images are compressed by a sparse measurement matrix,fed into the Bayesian Classifier directly in compressed domain. By configuring the sensor networks to generate cluster structures with different hierarchical types,the compressed data is transmitted in the network,and the data fusion in the compressed domain is performed in the cluster heads of each layer. The classification accuracy of target feature in compressed domain is improved by both the sparse measurement matrix and the self-learning of the classifier. The amount of computation and data transmission of networks are reduced by tracking directly in compressed domain without reconstructing. The results of simulation experiment,comparison test of standard database and application in robot soccer game of sensor network experimental platform show that the proposed algorithm has advantages in tracking accuracy,data transmission and energy consumption.
出处 《电子测量与仪器学报》 CSCD 北大核心 2016年第11期1617-1625,共9页 Journal of Electronic Measurement and Instrumentation
基金 浙江省自然科学基金(J20130411) 浙江省高等教育课堂教学改革项目(KG2015005) 传染病诊治国家重点实验室开放基金(2014KF06) 国家科技重大专项基金(2013ZX03005013)资助项目
关键词 压缩感知 传感器网络目标跟踪 压缩域 数据融合 compressed sensing target tracking in WSN compressed domain data fusion
  • 相关文献

参考文献5

二级参考文献84

  • 1孙斌.合成孔径雷达图像重建的断层投影技术[J].电子测量与仪器学报,2004,18(3):85-88. 被引量:1
  • 2SHEN S A, TONG M L, DENG H L, et al. Model based human motion tracking using probability evolutionary algorithm [J]. Pattern Recognition Letters, 2008, 29(13): 1877-1886.
  • 3SEO D W, CHAE H U, KIM B W, et al. Human tracking based on multiple view homography [J]. Journal of Universal Computer Science, 2009, 15(13): 2463-2484.
  • 4SORWAR G, MURSHED M, DOOLEY L. Fast global motion estimation using iterative least-square technique[C]. The 4th IEEE Pacific-Rim Conference On Multimedia Singapore, 2003, 1: 282-286.
  • 5HE Y W, FENG B, YANG S. Fast global motion estimation for global motion compensation coding [C]. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), 2001, 2: 233-236.
  • 6CHEUNG H K, SIU W C. Fast global motion estimation for sprite generation [C]. the IEEE International Symposium on Circuits and Systems, 2002, 3: 26-29.
  • 7RICHARD A, STEVEN M K, PETRE S. Estimation of the parameters of a bilinear model with applications to submarine detection and system identification [J]. Digital Signal Processing, 2007, 17(4): 756-773.
  • 8SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing [J]. Computer Vision, 1997, 23(1): 45-78.
  • 9DAVID G L. Distinctive image features from scale-invariant key-points [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10MORAVEC H E Visual mapping by a robot rover [C]. International Joint Conference on artificial Intelligence, 1979: 598-600.

共引文献88

同被引文献95

引证文献13

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部